How to see with sound Jacques S. Abramowicz

In a pitch-black cave,
bats can’t see much.

But even with their eyes shut,

they can navigate rocky topography
at incredible speeds.

This is because a bat’s flight
isn’t just guided by its eyes,

but rather, by its ears.

It may seem impossible to see
with sound,

but bats, naval officers, and doctors
do it all the time,

using the unique properties of ultrasound.

All sound is created when
molecules in the air, water,

or any other medium vibrate
in a pulsing wave.

The distance between each peak determines
the wave’s frequency,

measured as cycles per second, or hertz.

This means that over the same amount
of time,

a high frequency wave will complete
more cycles than a low frequency one.

This is especially true of ultrasound,

which includes any sound wave
exceeding 20,000 cycles per second.

Humans can’t hear or produce sounds
with such high frequencies,

but our flying friend can.

When it’s too dark to see, he emits
an ultrasound wave with tall peaks.

Since the wave cycles are
happening so quickly,

wave after wave rapidly bounces
off nearby surfaces.

Each wave’s tall peak hits
every nook and cranny,

producing an echo that carries
a lot of information.

By sensing the nuances
in this chain of echoes,

our bat can create an internal map
of its environment.

This is how bats use sound to see,

and the process inspired humans
to try and do the same.

In World War One, French scientists
sent ultrasound beams into the ocean

to detect nearby enemy submarines.

This early form of SONAR
was a huge success,

in large part because sound waves
travel even faster through mediums

with more tightly packed molecules,
like water.

In the 1950s, medical professionals began
to experiment with this technique

as a non-invasive way to see
inside a patient’s body.

Today, ultrasound imaging is used
to evaluate organ damage,

measure tissue thickness, and detect
gallbladder stones, tumors,

and blood clots.

But to explore how this tool
works in practice,

let’s consider its most well-known use—
the fetal ultrasound.

First, the skin is covered
with conductive gel.

Since sound waves lose speed and clarity
when traveling through air,

this gooey substance ensures
an airtight seal

between the body and the wand
emitting ultrasound waves.

Then the machine operator begins sending
ultrasound beams into the body.

The waves pass through liquids like urine,
blood, and amniotic fluid

without creating any echoes.

But when a wave encounters a solid
structure, it bounces back.

This echo is rendered as a dot
on the imaging screen.

Objects like bones
reflect the most waves,

appearing as tightly packed dots
forming bright white shapes.

Less dense objects appear
in fainter shades of gray,

slowly creating an image
of the fetus’s internal organs.

To get a complete picture,

waves need to reach different
depths in the patient’s body,

bypassing some tissues
while echoing off others.

Since longer, low frequency waves
actually penetrate deeper

than short, high frequency ones,

multiple frequencies
are often used together

and composited into a life-like image.

The operator can then
zoom in and focus on different areas.

And since ultrasound machines send and
receive cascades of waves in real time,

the machine can even visualize movement.

The waves used for medical ultrasound
range from 2 million to 10 million hertz—

over a hundred times higher
than human ears can hear.

These incredibly high frequencies create
detailed images

that allow doctors to diagnose
the smallest developmental deviations

in the brain, heart, spine, and more.

Even outside of pre-natal care,

medical ultrasound has huge advantages
over similar technologies.

Unlike radiation-based imaging
or invasive surgical procedures,

ultrasound has no known negative
side effects when used properly.

At very high levels,
the heat caused by ultrasound waves

can damage sensitive tissues,

but technicians typically use
the lowest levels possible.

And since modern ultrasound machines
can be small and portable,

doctors can use them in the field—

allowing them to see clearly
in any medical emergency.

在漆黑的洞穴中,
蝙蝠看不到太多东西。

但即使闭上眼睛,

它们也能
以令人难以置信的速度在岩石地形上航行。

这是因为蝙蝠的
飞行不仅是由它的眼睛引导的,

而是由它的耳朵引导的。 声音

似乎不可能看到

但蝙蝠、海军军官和
医生一直在

使用超声波的独特特性。


空气、水

或任何其他介质
中的分子以脉冲波振动时,就会产生所有声音。

每个峰值之间的距离决定
了波的频率,

以每秒周期数或赫兹来衡量。

这意味着在相同
的时间内

,高频波将比低频波完成
更多的周期。

超声波尤其如此,

它包括
每秒超过 20,000 次循环的任何声波。

人类无法听到或
发出如此高频率的声音,

但我们的飞行朋友可以。

当天太黑看不见时,他会发出
一个高高的超声波。

由于波浪周期
发生得如此之快,

一波又一波迅速从
附近的表面反弹。

每一波的高峰击中
每一个角落和缝隙,

产生一个
承载大量信息的回声。

通过感知
这一系列回声中的细微差别,

我们的蝙蝠可以创建
其环境的内部地图。

这就是蝙蝠使用声音来观察的方式

,这个过程激发了人类
尝试做同样的事情。

在第一次世界大战中,法国科学家
将超声波束发射到海洋中

以探测附近的敌方潜艇。

这种早期形式的 SONAR
取得了巨大的成功,这

在很大程度上是因为声波在

分子更紧密的介质(
如水)中传播得更快。

在 1950 年代,医疗专业人员
开始试验这种技术,将其

作为一种非侵入性的方式来观察
患者体内。

今天,超声成像
用于评估器官损伤、

测量组织厚度以及检测
胆囊结石、肿瘤

和血栓。

但是为了探索这个
工具在实践中是如何工作的,

让我们考虑一下它最著名的用途——
胎儿超声。

首先,皮肤被
导电凝胶覆盖。

由于声波在空气中传播时会失去速度和清晰度

这种粘性物质可确保

身体和发射超声波的棒之间的气密密封

然后机器操作员开始
向身体发送超声波束。

波通过尿液、
血液和羊水等液体

而不会产生任何回声。

但是当波浪遇到固体
结构时,它会反弹回来。

该回波在成像屏幕上呈现为一个点

像骨头这样的物体
反射的波最多,

表现为紧密排列的点,
形成明亮的白色形状。

密度较低的物体
以较暗的灰色阴影出现,

慢慢地形成
胎儿内部器官的图像。

为了获得完整的图像,

波需要
到达患者身体的不同深度,

绕过一些组织,
同时回响其他组织。

由于较长的低频波
实际上

比短的高频波穿透得更深,

因此经常将多个频率一起使用

并合成为栩栩如生的图像。

然后操作员可以
放大并关注不同的区域。

由于超声波机器实时发送和
接收波级联

,机器甚至可以可视化运动。

用于医疗超声的波
范围从 200 万到 1000 万赫兹——

比人耳所能听到的频率高一百倍以上。

这些令人难以置信的高频率创建了
详细的图像

,使医生能够诊断

大脑、心脏、脊柱等部位的最小发育偏差。

即使在产前护理之外,

医学超声也
比类似技术具有巨大优势。

与基于辐射的成像
或侵入性外科手术不同,如果使用得当,

超声波没有已知的负面
副作用。

在非常高的水平下,
超声波引起的热量

会损坏敏感组织,

但技术人员通常会
使用尽可能低的水平。

由于现代超声波机器
体积小且便于携带,

医生可以在现场使用它们——

让他们
在任何医疗紧急情况下都能清楚地看到。