Can a black hole be destroyed Fabio Pacucci

Black holes are among the most
destructive objects in the universe.

Anything that gets too close to the
central singularity of a black hole,

be it an asteroid, planet, or star,

risks being torn apart by its
extreme gravitational field.

And if the approaching object happens
to cross the black hole’s event horizon,

it’ll disappear and never re-emerge,

adding to the black hole’s mass and
expanding its radius in the process.

There is nothing we could throw
at a black hole

that would do the least bit of
damage to it.

Even another black hole won’t destroy it–

the two will simply merge into a larger
black hole,

releasing a bit of energy as gravitational
waves in the process.

By some accounts,

it’s possible that the universe may
eventually consist entirely of black holes

in a very distant future.

And yet, there may be a way to destroy,
or “evaporate,” these objects after all.

If the theory is true,

all we need to do is to wait.

In 1974,

Stephen Hawking theorized a process

that could lead a black hole
to gradually lose mass.

Hawking radiation, as it came to be known,

is based on a well-established phenomenon
called quantum fluctuations of the vacuum.

According to quantum mechanics,

a given point in spacetime fluctuates
between multiple possible energy states.

These fluctuations are driven by the
continuous creation and destruction

of virtual particle pairs,

which consist of a particle and its
oppositely charged antiparticle.

Normally, the two collide and annihilate
each other shortly after appearing,

preserving the total energy.

But what happens when they appear just at
the edge of a black hole’s event horizon?

If they’re positioned just right,

one of the particles could escape the
black hole’s pull

while its counterpart falls in.

It would then annihilate another
oppositely charged particle

within the event horizon
of the black hole,

reducing the black hole’s mass.

Meanwhile, to an outside observer,

it would look like the black hole
had emitted the escaped particle.

Thus, unless a black hole continues
to absorb additional matter and energy,

it’ll evaporate particle by particle,
at an excruciatingly slow rate.

How slow?

A branch of physics, called black hole
thermodynamics, gives us an answer.

When everyday objects or celestial bodies
release energy to their environment,

we perceive that as heat,

and can use their energy emission to
measure their temperature.

Black hole thermodynamics

suggests that we can similarly define the
“temperature” of a black hole.

It theorizes that the more massive the
black hole,

the lower its temperature.

The universe’s largest black holes

would give off temperatures of the
order of 10 to the -17th power Kelvin,

very close to absolute zero.

Meanwhile, one with the
mass of the asteroid Vesta

would have a temperature close to 200
degrees Celsius,

thus releasing a lot of energy
in the form of Hawking Radiation

to the cold outside environment.

The smaller the black hole,

the hotter it seems to be burning–

and the sooner it’ll burn out completely.

Just how soon?

Well, don’t hold your breath.

First of all, most black holes accrete,
or absorb matter and energy,

more quickly than they emit
Hawking radiation.

But even if a black hole with the
mass of our Sun stopped accreting,

it would take 10 to the 67th power years–

many many magnitudes longer than the
current age of the Universe—

to fully evaporate.

When a black hole reaches
about 230 metric tons,

it’ll have only one more second to live.

In that final second,

its event horizon becomes
increasingly tiny,

until finally releasing all of its energy
back into the universe.

And while Hawking radiation has never
been directly observed,

some scientists believe that certain gamma
ray flashes detected in the sky

are actually traces of the last moments

of small, primordial black holes formed
at the dawn of time.

Eventually, in an almost inconceivably
distant future,

the universe may be left
as a cold and dark place.

But if Stephen Hawking was right,

before that happens,

the normally terrifying and otherwise
impervious black holes

will end their existence in a final
blaze of glory.

黑洞是
宇宙中最具破坏性的物体之一。

任何离
黑洞中心奇点太近的东西

,无论是小行星、行星还是恒星,

都有被其
极端引力场撕裂的风险。

如果接近的物体
恰好穿过黑洞的事件视界,

它将消失并且永远不会重新出现,

从而增加黑洞的质量并
在此过程中扩大其半径。

没有什么东西可以
扔到一个黑洞

上来对它造成最小的
伤害。

即使是另一个黑洞也不会摧毁它——

两者只会合并成一个更大的
黑洞,在这个过程中

释放出一点能量作为引力
波。

根据某些说法,

在遥远的未来,宇宙
最终可能完全由黑洞组成

然而,毕竟可能有一种方法可以摧毁
或“蒸发”这些物体。

如果这个理论是正确的

,我们需要做的就是等待。

1974 年,

斯蒂芬霍金提出了一个

可能导致
黑洞逐渐失去质量的过程的理论。

众所周知,霍金辐射

是基于一种公认
的真空量子涨落现象。

根据量子力学,

时空中的给定点在
多种可能的能量状态之间波动。

这些波动是由虚拟粒子对的
不断产生和破坏

所驱动的,虚拟粒子

对由一个粒子及其带
相反电荷的反粒子组成。

通常情况下,两者
在出现后不久就会相互碰撞并湮灭,

保留总能量。

但是当它们出现在
黑洞视界的边缘时会发生什么?

如果它们的位置恰到好处,

其中一个粒子可能会逃脱
黑洞的拉力,

而其对应的粒子会落入。

然后它将湮灭黑洞事件视界内的另一个带
相反电荷的粒子

从而减少黑洞的质量。

与此同时,对于外部观察者来说,

黑洞
似乎已经释放了逃逸的粒子。

因此,除非黑洞
继续吸收额外的物质和能量

,否则它将
以极其缓慢的速度逐个粒子蒸发。

有多慢?

物理学的一个分支,称为黑洞
热力学,给了我们一个答案。

当日常物体或天体
向其环境释放能量时,

我们将其视为热量,

并可以使用它们的能量释放来
测量它们的温度。

黑洞热力学

表明我们可以类似地定义
黑洞的“温度”。

它的理论是,黑洞的质量越大

它的温度就越低。

宇宙中最大的黑洞

会释放出
大约 10 到 -17 次方开尔文的温度,

非常接近绝对零。

同时,与
灶神星质量

相当的一颗小行星的温度接近200
摄氏度,

从而
以霍金辐射的形式

向寒冷的外部环境释放大量能量。

黑洞越小,

它似乎燃烧得越热——而且

它会越早完全燃烧。

多快?

好吧,不要屏住呼吸。

首先,大多数黑洞
吸积或吸收物质和能量

的速度比它们发射
霍金辐射的速度要快。

但即使
质量与我们太阳相当的黑洞停止吸积,

也需要 10 到 67 次幂年——

比当前宇宙年龄长许多数量级——

才能完全蒸发。

当一个黑洞达到
大约 230 公吨时,

它只剩下一秒钟的生命。

在最后一秒,

它的视界变得
越来越小,

直到最终将其所有能量释放
回宇宙。

虽然
从未直接观察到霍金辐射,但

一些科学家认为,
在天空中探测到的某些伽马射线闪光

实际上是在黎明时分

形成的小型原始黑洞的最后时刻的痕迹

最终,在一个几乎不可思议的
遥远未来

,宇宙可能会
变成一个寒冷而黑暗的地方。

但如果斯蒂芬霍金是对的,那么

在此之前

,通常可怕且不
可渗透的黑洞

将在最后的荣耀中结束它们的存在