Hawkings black hole paradox explained Fabio Pacucci

Scientists work on the boundaries of
the unknown,

where every new piece of knowledge
forms a path into a void of uncertainty.

And nothing is more uncertain–

or potentially enlightening–
than a paradox.

Throughout history,

paradoxes have threatened to
undermine everything we know,

and just as often, they’ve reshaped our
understanding of the world.

Today, one of the biggest paradoxes in
the universe

threatens to unravel the fields of general
relativity and quantum mechanics:

the black hole information paradox.

To understand this paradox,

we first need to define what we mean
by “information.”

Typically, the information we talk about
is visible to the naked eye.

For example,

this kind of information tells us that
an apple is red, round, and shiny.

But physicists are more concerned with
quantum information.

This refers to the quantum properties of
all the particles that make up that apple,

such as their position, velocity and spin.

Every object in the universe is composed

of particles with unique
quantum properties.

This idea is evoked most significantly
in a vital law of physics:

the total amount of quantum information
in the Universe must be conserved.

Even if you destroy an object beyond
recognition,

its quantum information is never
permanently deleted.

And theoretically, knowledge of that
information

would allow us to recreate the object
from its particle components.

Conservation of information isn’t just an
arbitrary rule,

but a mathematical necessity, upon which
much of modern science is built.

But around black holes,
those foundations get shaken.

When an apple enters a black hole,

it seems as though it leaves the universe,

and all its quantum information
becomes irretrievably lost.

However, this doesn’t immediately
break the laws of physics.

The information is out of sight,

but it might still exist within the
black hole’s mysterious void.

Alternatively, some theories suggest

that information doesn’t even make it
inside the black hole at all.

Seen from outside, it’s as if the apple’s
quantum information

is encoded on the surface layer of the
black hole, called the event horizon.

As the black hole’s mass increases,

the surface of the event horizon
increases as well.

So it’s possible that as a black hole
swallows an object,

it also grows large enough to conserve
the object’s quantum information.

But whether information is conserved
inside the black hole or on its surface,

the laws of physics remain intact–

until you account for Hawking Radiation.

Discovered by Stephen Hawking in 1974,

this phenomenon shows that black
holes are gradually evaporating.

Over incredibly long periods of time

black holes lose mass as they shed
particles away from their event horizons.

Critically, it seems as though the
evaporating particles

are unrelated to the information
the black hole encodes–

suggesting that a black hole and all the
quantum information it contains

could be completely erased.

Does that quantum information
truly disappear?

If not, where does it go?

While the evaporation process
would take an incredibly long time,

the questions it raises for physics
are far more urgent.

The destruction of information

would force us to rewrite some of our most
fundamental scientific paradigms.

But fortunately, in science,

every paradox is an opportunity
for new discoveries.

Researchers are investigating a broad
range of possible solutions

to the Information Paradox.

Some have theorized

that information actually is encoded
in the escaping radiation,

in some way we can’t yet understand.

Others have suggested the paradox is
just a misunderstanding

of how general relativity and
quantum field theory interact.

Respectively,

these two theories describe the largest
and smallest physical phenomena,

and they’re notoriously
difficult to combine.

Some researchers argue that a solution
to this and many other paradoxes

will come naturally with a “unified
theory of everything.”

But perhaps the most mind-bending
theory to come from exploring this paradox

is the holographic principle.

Expanding on the idea that the 2D
surface of an event horizon

can store quantum information,

this principle suggests that the very
boundary of the observable universe

is also a 2D surface encoded
with information

about real, 3D objects.

If this is true, it’s possible that
reality as we know it

is just a holographic
projection of that information.

If proven, any of these theories would
open up new questions to explore,

while still preserving our current
models of the universe.

But it’s also possible that those
models are wrong!

Either way, this paradox has already
helped us take another step

into the unknown.

科学家们在未知的边界上工作

,每一条新知识都会
形成一条通往不确定性虚空的道路。

没有什么比悖论更不确定——

或可能具有启发性的
了。

纵观历史,

悖论威胁要
破坏我们所知道的一切

,而且它们经常重塑我们
对世界的理解。

今天,宇宙中最大的悖论
之一有

可能解开
广义相对论和量子力学领域

:黑洞信息悖论。

要理解这个悖论,

我们首先需要定义
“信息”的含义。

通常,我们谈论的信息
是肉眼可见的。

例如,

这种信息告诉我们,
一个苹果是红色的、圆形的、有光泽的。

但物理学家更关心的是
量子信息。

这是
指构成那个苹果的所有粒子的量子特性,

例如它们的位置、速度和自旋。

宇宙中的每一个物体都是由

具有独特量子特性的粒子组成的

这个想法
在一个重要的物理定律中得到了最显着的体现

:宇宙中的量子信息总量
必须是守恒的。

即使你将一个物体破坏得
面目全非,

它的量子信息也永远不会被
永久删除。

从理论上讲,对这些
信息的了解

将使我们能够
从其粒子组件中重新创建对象。

信息守恒不仅是一个
任意规则,

而且是数学上的必然性,
现代科学的大部分建立在此之上。

但在黑洞周围,
这些基础会动摇。

当苹果进入黑洞时,

就好像它离开了宇宙,它

的所有量子信息都
变得不可挽回地丢失了。

但是,这并不会立即
违反物理定律。

信息是看不见的,

但它可能仍然存在于
黑洞的神秘虚空中。

或者,一些理论表明

,信息甚至根本无法
进入黑洞。

从外面看,就好像苹果的
量子信息

被编码在黑洞的表层
,称为事件视界。

随着黑洞质量的增加,

事件视界的表面
也会增加。

因此,当黑洞
吞噬一个物体时,

它也有可能变得足够大以保存
该物体的量子信息。

但无论信息是
在黑洞内部还是在其表面保存

,物理定律都保持不变——

直到你考虑到霍金辐射。

由斯蒂芬霍金在 1974 年发现,

这一现象表明
黑洞正在逐渐蒸发。

在令人难以置信的长时间内,

黑洞会在将
粒子从事件视界中释放出来时失去质量。

至关重要的是,
蒸发的

粒子似乎与黑洞编码的信息无关——

这表明黑洞及其
包含的所有量子信息都

可能被完全抹去。

量子信息
真的消失了吗?

如果没有,它会去哪里?

虽然蒸发过程
需要非常长的时间,

但它为物理学提出的问题
要紧迫得多。

信息的破坏

将迫使我们重写一些
最基本的科学范式。

但幸运的是,在科学中,

每一个悖论都是
新发现的机会。

研究人员正在研究信息悖论的
各种可能解决方案

有些人

认为信息实际上是
在逃逸的辐射中编码的,

在某种程度上我们还无法理解。

其他人认为这个悖论
只是对

广义相对论和
量子场论如何相互作用的误解。

这两种理论分别描述了最大
和最小的物理现象,

众所周知,它们
很难结合起来。

一些研究人员认为,
解决这个和许多其他悖论的方法

将自然而然地出现在“
万物统一理论”中。

但也许
从探索这个悖论中得出的最令人费解的理论

是全息原理。

扩展事件视界的 2D 表面

可以存储量子信息的想法,

这一原理表明,
可观测宇宙的边界

也是一个 2D 表面,编码

关于真实 3D 物体的信息。

如果这是真的,
那么我们所知道的现实可能

只是
该信息的全息投影。

如果得到证实,这些理论中的任何一个都将
开辟新的探索问题,

同时仍保留我们当前
的宇宙模型。

但也有可能这些
模型是错误的!

无论哪种方式,这个悖论已经
帮助我们向未知领域又迈出了一步