How humans could evolve to survive in space Lisa Nip

So there are lands
few and far between on Earth itself

that are hospitable to humans
by any measure,

but survive we have.

Our primitive ancestors, when they found
their homes and livelihood endangered,

they dared to make their way
into unfamiliar territories

in search of better opportunities.

And as the descendants of these explorers,

we have their nomadic blood
coursing through our own veins.

But at the same time,

distracted by our bread and circuses

and embroiled in the wars
that we have waged on each other,

it seems that we have forgotten
this desire to explore.

We, as a species, we’re evolved uniquely

for Earth, on Earth, and by Earth,

and so content are we
with our living conditions

that we have grown complacent
and just too busy

to notice that its resources are finite,

and that our Sun’s life is also finite.

While Mars and all the movies
made in its name

have reinvigorated
the ethos for space travel,

few of us seem to truly realize
that our species' fragile constitution

is woefully unprepared
for long duration journeys into space.

Let us take a trek
to your local national forest

for a quick reality check.

So just a quick show of hands here:

how many of you think you would be able
to survive in this lush wilderness

for a few days?

Well, that’s a lot of you.

How about a few weeks?

That’s a decent amount.

How about a few months?

That’s pretty good too.

Now, let us imagine
that this local national forest

experiences an eternal winter.

Same questions: how many of you think you
would be able to survive for a few days?

That’s quite a lot.

How about a few weeks?

So for a fun twist, let us imagine
that the only source of water available

is trapped as frozen blocks
miles below the surface.

Soil nutrients are so minimal
that no vegetation can be found,

and of course hardly any atmosphere
exists to speak of.

Such examples are only a few
of the many challenges we would face

on a planet like Mars.

So how do we steel ourselves for voyages
whose destinations are so far removed

from a tropical vacation?

Will we continuously ship supplies
from Planet Earth?

Build space elevators,
or impossible miles of transport belts

that tether your planet of choice
to our home planet?

And how do we grow things like food
that grew up on Earth like us?

But I’m getting ahead of myself.

In our species' journey
to find a new home under a new sun,

we are more likely than not
going to be spending much time

in the journey itself,

in space,

on a ship, a hermetic flying can,

possibly for many generations.

The longest continuous amount of time
that any human has spent in space

is in the vicinity of 12 to 14 months.

From astronauts' experiences in space,

we know that spending time
in a microgravity environment

means bone loss, muscle atrophy,
cardiovascular problems,

among many other complications

that range for the physiological
to the psychological.

And what about macrogravity,

or any other variation
in gravitational pull

of the planet that we find ourselves on?

In short, our cosmic voyages
will be fraught with dangers

both known and unknown.

So far we’ve been looking to this
new piece of mechanical technology

or that great next generation robot

as part of a lineup to ensure
our species safe passage in space.

Wonderful as they are,
I believe the time has come

for us to complement
these bulky electronic giants

with what nature has already invented:

the microbe,

a single-celled organism that is itself
a self-generating, self-replenishing,

living machine.

It requires fairly little to maintain,

offers much flexibility in design

and only asks to be carried
in a single plastic tube.

The field of study that has enabled us
to utilize the capabilities of the microbe

is known as synthetic biology.

It comes from molecular biology,
which has given us antibiotics, vaccines

and better ways to observe
the physiological nuances

of the human body.

Using the tools of synthetic biology,

we can now edit the genes
of nearly any organism,

microscopic or not,

with incredible speed and fidelity.

Given the limitations
of our man-made machines,

synthetic biology will be a means for us
to engineer not only our food,

our fuel and our environment,

but also ourselves

to compensate
for our physical inadequacies

and to ensure our survival in space.

To give you an example

of how we can use synthetic biology
for space exploration,

let us return to the Mars environment.

The Martian soil composition is similar
to that of Hawaiian volcanic ash,

with trace amounts of organic material.

Let’s say, hypothetically,

what if martian soil
could actually support plant growth

without using Earth-derived nutrients?

The first question
we should probably ask is,

how would we make
our plants cold-tolerant?

Because, on average,
the temperature on Mars

is a very uninviting
negative 60 degrees centigrade.

The next question we should ask is,

how do we make
our plants drought-tolerant?

Considering that most of the water
that forms as frost

evaporates more quickly
than I can say the word “evaporate.”

Well, it turns out
we’ve already done things like this.

By borrowing genes
for anti-freeze protein from fish

and genes for drought tolerance
from other plants like rice

and then stitching them
into the plants that need them,

we now have plants that can tolerate
most droughts and freezes.

They’re known on Earth as GMOs,

or genetically modified organisms,

and we rely on them to feed
all the mouths of human civilization.

Nature does stuff like this already,

without our help.

We have simply found
more precise ways to do it.

So why would we want to change
the genetic makeup of plants for space?

Well, to not do so
would mean needing to engineer

endless acres of land
on an entirely new planet

by releasing trillions of gallons
of atmospheric gasses

and then constructing
a giant glass dome to contain it all.

It’s an unrealistic engineering enterprise

that quickly becomes
a high-cost cargo transport mission.

One of the best ways to ensure

that we will have the food supplies
and the air that we need

is to bring with us organisms
that have been engineered

to adapt to new and harsh environments.

In essence, using engineered organisms
to help us terraform a planet

both in the short and long term.

These organisms can then also
be engineered to make medicine or fuel.

So we can use synthetic biology
to bring highly engineered plants with us,

but what else can we do?

Well, I mentioned earlier
that we, as a species,

were evolved uniquely for planet Earth.

That fact has not changed much
in the last five minutes

that you were sitting here
and I was standing there.

And so, if we were to dump
any of us on Mars right this minute,

even given ample food, water, air

and a suit,

we are likely to experience
very unpleasant health problems

from the amount of ionizing radiation
that bombards the surface

of planets like Mars that have little
or nonexistent atmosphere.

Unless we plan
to stay holed up underground

for the duration of our stay
on every new planet,

we must find better ways
of protecting ourselves

without needing to resort
to wearing a suit of armor

that weighs something
equal to your own body weight,

or needing to hide behind a wall of lead.

So let us appeal
to nature for inspiration.

Among the plethora of life here on Earth,

there’s a subset of organisms
known as extremophiles,

or lovers of extreme living conditions,

if you’ll remember
from high school biology.

And among these organisms is a bacterium
by the name of Deinococcus radiodurans.

It is known to be able to withstand cold,
dehydration, vacuum, acid,

and, most notably, radiation.

While its radiation
tolerance mechanisms are known,

we have yet to adapt
the relevant genes to mammals.

To do so is not particularly easy.

There are many facets
that go into its radiation tolerance,

and it’s not as simple
as transferring one gene.

But given a little bit of human ingenuity

and a little bit of time,

I think to do so is not very hard either.

Even if we borrow just a fraction
of its ability to tolerate radiation,

it would be infinitely better
than what we already have,

which is just the melanin in our skin.

Using the tools of synthetic biology,

we can harness Deinococcus
radiodurans' ability

to thrive under otherwise
very lethal doses of radiation.

As difficult as it is to see,

homo sapiens, that is humans,

evolves every day,

and still continues to evolve.

Thousands of years of human evolution

has not only given us
humans like Tibetans,

who can thrive in low-oxygen conditions,

but also Argentinians,
who can ingest and metabolize arsenic,

the chemical element
that can kill the average human being.

Every day, the human body evolves
by accidental mutations

that equally accidentally
allow certain humans

to persevere in dismal situations.

But, and this is a big but,

such evolution requires two things
that we may not always have,

or be able to afford,

and they are death and time.

In our species' struggle
to find our place in the universe,

we may not always have the time necessary

for the natural evolution
of extra functions

for survival on non-Earth planets.

We’re living in what E.O. Wilson
has termed the age of gene circumvention,

during which we remedy our genetic defects
like cystic fibrosis or muscular dystrophy

with temporary external supplements.

But with every passing day,

we approach the age
of volitional evolution,

a time during which we as a species

will have the capacity to decide
for ourselves our own genetic destiny.

Augmenting the human body
with new abilities

is no longer a question of how,

but of when.

Using synthetic biology

to change the genetic makeup
of any living organisms,

especially our own,

is not without its moral
and ethical quandaries.

Will engineering ourselves
make us less human?

But then again, what is humanity

but star stuff
that happens to be conscious?

Where should human genius direct itself?

Surely it is a bit of a waste
to sit back and marvel at it.

How do we use our knowledge

to protect ourselves
from the external dangers

and then protect ourselves from ourselves?

I pose these questions

not to engender the fear of science

but to bring to light
the many possibilities

that science has afforded
and continues to afford us.

We must coalesce as humans
to discuss and embrace the solutions

not only with caution

but also with courage.

Mars is a destination,

but it will not be our last.

Our true final frontier
is the line we must cross

in deciding what we can and should make
of our species' improbable intelligence.

Space is cold, brutal and unforgiving.

Our path to the stars
will be rife with trials

that will bring us to question
not only who we are

but where we will be going.

The answers will lie in our choice
to use or abandon the technology

that we have gleaned from life itself,

and it will define us for the remainder
of our term in this universe.

Thank you.

(Applause)

因此
,在地球本身

上,无论以何种标准衡量都适合人类居住的土地很少且相距甚远

但我们却能幸存下来。

我们的原始祖先,当他们发现
自己的家园和生计受到威胁时,

他们敢于
进入陌生的

领域寻找更好的机会。

作为这些探险家的后代,

我们的血管中流淌着他们的游牧血脉。

但与此同时,

被我们的面包和马戏团分散注意力

,卷入了
我们对彼此发动的战争,

我们似乎忘记了
这种探索的欲望。

作为一个物种,我们是

为地球、在地球上和地球上独特地进化的

,所以我们满足
于我们的生活条件

,我们已经变得自满
,只是太忙

而没有注意到它的资源是有限的,

而我们的 太阳的生命也是有限的。

虽然火星和所有
以它的名义制作的电影

都重振
了太空旅行的精神,

但我们似乎很少有人真正
意识到我们物种脆弱的体质

对于长时间的太空旅行毫无准备。

让我们
长途跋涉到您当地的国家森林

进行快速的现实检查。

所以在这里快速举手:

你们中有多少人认为自己
能够在这片郁郁葱葱的荒野中生存

几天?

好吧,你们很多。

几个星期怎么样?

这是一个可观的数额。

几个月怎么样?

这也很不错。

现在,让我们想象
一下,这片当地的国家森林

经历了一个永恒的冬天。

同样的问题:你们中有多少人认为自己
能够存活几天?

这是相当多的。

几个星期怎么样?

因此,为了有趣的转折,让我们想象
唯一可用的水源

被困
在地表以下数英里处的冰冻块中。

土壤养分非常少
,根本找不到植被

,当然也几乎没有大气
存在。

这些例子只是
我们在火星这样的星球上将面临的众多挑战中的一小部分

那么,我们如何为
目的地

远离热带假期的航程做好准备呢?

我们会持续
从地球运送物资吗?

建造太空电梯,
或者

将您选择的星球
与我们的家园星球相连的不可能数英里的运输带?

我们如何种植像我们一样
在地球上长大的食物?

但我正在超越自己。

在我们这个物种
在新的阳光下寻找新家的旅程中,

我们很可能
会花很多时间

在旅程本身,

在太空中,

在船上,在密封的飞行罐上,

可能会持续好几代人。

任何人类在

太空中度过的最长连续时间约为 12 到 14 个月。

根据宇航员在太空的经历,

我们知道在微重力环境中度过的时间

意味着骨质流失、肌肉萎缩、
心血管问题

以及许多其他

从生理
到心理的并发症。

那么大重力,

或者

我们发现自己所在星球的任何其他引力变化呢?

简而言之,我们的宇宙航行
将充满

已知和未知的危险。

到目前为止,我们一直在寻找这种
新的机械技术

或下一代伟大的机器人

作为阵容的一部分,以确保
我们的物种在太空中安全通过。

尽管它们很奇妙,但
我相信现在是时候

让我们用大自然已经发明的东西来补充
这些庞大的电子巨头

:微生物,

一种单细胞有机体,它本身就是
一台自我生成、自我补充的

活机器。

它几乎不需要维护,

在设计上提供了很大的灵活性,

并且只要求
在单个塑料管中携带。

使我们
能够利用微生物能力的研究领域

被称为合成生物学。

它来自分子生物学,
它为我们提供了抗生素、疫苗

和更好的方法来观察人体
的生理细微差别

使用合成生物学工具,

我们现在可以以令人难以置信的速度和保真度编辑
几乎任何生物体的基因,无论是否是

微观的

鉴于我们人造机器的局限性,

合成生物学将成为
我们设计食物

、燃料和环境以及

我们自己的一种手段,


弥补我们的身体缺陷

并确保我们在太空中的生存。

为了给您举个例子

,说明我们如何使用合成生物学
进行太空探索,

让我们回到火星环境。

火星土壤成分与
夏威夷火山灰相似,

含有微量有机物质。

假设

,如果火星
土壤实际上可以在

不使用地球来源的营养物质的情况下支持植物生长呢?

我们可能应该问的第一个问题是,

我们如何让
我们的植物耐寒?

因为,平均而言,
火星上的温度

是非常令人讨厌的
负 60 摄氏度。

我们应该问的下一个问题是,

我们如何使
我们的植物耐旱?

考虑到大部分形成霜的水

蒸发
得比我说的“蒸发”这个词要快。

好吧,事实证明
我们已经做过这样的事情。

通过
从鱼类中借用抗冻蛋白

基因和
从其他植物(如水稻)中借用耐旱基因

,然后将它们缝合
到需要它们的植物中,

我们现在拥有能够耐受
大多数干旱和冰冻的植物。

它们在地球上被称为 GMO

或转基因生物

,我们依靠它们来养活
人类文明的所有嘴巴。

大自然已经在做这样的事情了,

没有我们的帮助。

我们只是找到了
更精确的方法来做到这一点。

那么,我们为什么要改变
太空植物的基因构成呢?

好吧,不这样做
就意味着需要

通过释放数万亿加仑
的大气气体

,然后建造
一个巨大的玻璃穹顶来容纳这一切,在一个全新的星球上设计无穷无尽的土地。

这是一个不切实际的工程企业

,很快就变成
了一项高成本的货物运输任务。

确保我们拥有所需的食物供应
和空气的最佳方法之一

是携带
经过工程改造

以适应新的恶劣环境的生物体。

从本质上讲,使用工程生物
来帮助我们

在短期和长期内对地球进行地球化。

然后这些生物也
可以被设计成制造药物或燃料。

所以我们可以利用合成
生物学将高度工程化的植物带到我们身边,

但我们还能做些什么呢?

好吧,我之前提到过
,我们作为一个物种,

是为地球而独特进化的。

在过去的五分钟里

,你坐在这里
,我站在那里,这一事实并没有太大改变。

因此,如果我们此刻将
任何人扔到火星上,

即使有充足的食物、水、空气

和一套衣服,

我们也可能会因轰击行星表面的大量电离辐射而遇到
非常不愉快的健康问题

就像火星一样,
大气层很少或根本不存在。

除非我们计划在每个新星球
上逗留期间都躲在地下

,否则

我们必须找到更好的方法
来保护自己,

而不需要穿着

一件重量
与自己体重相等的盔甲,

或者需要 躲在一堵铅墙后面。

因此,让我们
向大自然寻求灵感。 如果你记得高中生物学的话

,在地球上的众多生命中,

有一部分
被称为极端微生物

,或极端生活条件爱好者

在这些生物中,有一种
名为耐辐射球菌的细菌。

众所周知,它能够承受寒冷、
脱水、真空、酸

,尤其是辐射。

虽然它的辐射
耐受机制是已知的,

但我们尚未
使相关基因适应哺乳动物。

做到这一点并不是特别容易。

它的辐射耐受性有很多方面

,它并不
像转移一个基因那么简单。

但是考虑到一点人类的聪明才智

和一点点时间,

我认为这样做也不是很难。

即使我们只借用它的一小
部分耐受辐射的能力,

它也会
比我们已经拥有的要好得多,

这只是我们皮肤中的黑色素。

使用合成生物学工具,

我们可以利用耐
辐射球菌


非常致命的辐射剂量下茁壮成长的能力。

尽管很难看到,

智人,即人类,

每天都

在进化,并且仍在继续进化。

数千年的人类

进化不仅给了我们
像西藏人

这样可以在低氧条件下茁壮成长的人类,

也给了
阿根廷人可以摄取和代谢砷

这种可以杀死普通人的化学元素。

每天,人体都会
因意外突变而进化,这些突变

同样会意外地
让某些人

在悲惨的情况下坚持下去。

但是,这是一个很大的但是,

这样的进化需要两
件我们可能并不总是拥有

或负担得起的东西

,它们是死亡和时间。

在我们这个物种
在宇宙中寻找自己位置的斗争中,

我们可能并不总是有必要的时间

来自然
进化额外的功能

以在非地球行星上生存。

我们生活在 E.O.
威尔逊称之为基因规避时代,

在此期间,我们通过临时的外部补充剂来修复我们的遗传缺陷,
如囊性纤维化或肌肉萎缩

症。

但是随着时间的推移,

我们接近
了意志进化

的时代,在这个时代,我们作为一个物种

将有能力
为自己决定自己的基因命运。

用新

能力增强人体不再是如何的问题,

而是何时的问题。

使用合成生物学

来改变
任何生物体的基因构成,

尤其是我们自己的,

并非没有道德
和伦理困境。

改造我们自己
会让我们变得不那么人性化吗?

但是话又说回来,人类

除了
碰巧有意识的恒星物质之外,还有什么?

人类的天才应该把自己导向哪里?

当然
,坐下来惊叹它有点浪费。

我们如何利用我们的知识

来保护自己
免受外部危险

,然后保护自己免受自己的伤害?

我提出这些问题

并不是要引起对科学的恐惧,

而是要

揭示科学已经提供
并继续提供给我们的许多可能性。

作为人类,我们必须团结起来,不仅要谨慎而且要勇敢
地讨论和接受解决方案

火星是一个目的地,

但它不会是我们的最后一个。

我们真正的最终边界
是我们必须跨越的界线,

以决定我们可以和应该如何
利用我们物种不可思议的智慧。

太空是冰冷、残酷和无情的。

我们通往星星的道路
将充满考验

,这将使我们
不仅质疑我们是谁,

而且质疑我们将要去哪里。

答案将在于我们
选择使用或放弃

我们从生活本身中收集到的技术

,它将定义我们
在这个宇宙中剩余的任期。

谢谢你。

(掌声)