How to take a picture of a black hole Katie Bouman

In the movie “Interstellar,”

we get an up-close look
at a supermassive black hole.

Set against a backdrop of bright gas,

the black hole’s massive
gravitational pull

bends light into a ring.

However, this isn’t a real photograph,

but a computer graphic rendering –

an artistic interpretation
of what a black hole might look like.

A hundred years ago,

Albert Einstein first published
his theory of general relativity.

In the years since then,

scientists have provided
a lot of evidence in support of it.

But one thing predicted
from this theory, black holes,

still have not been directly observed.

Although we have some idea
as to what a black hole might look like,

we’ve never actually taken
a picture of one before.

However, you might be surprised to know
that that may soon change.

We may be seeing our first picture
of a black hole in the next couple years.

Getting this first picture will come down
to an international team of scientists,

an Earth-sized telescope

and an algorithm that puts together
the final picture.

Although I won’t be able to show you
a real picture of a black hole today,

I’d like to give you a brief glimpse
into the effort involved

in getting that first picture.

My name is Katie Bouman,

and I’m a PhD student at MIT.

I do research in a computer science lab

that works on making computers
see through images and video.

But although I’m not an astronomer,

today I’d like to show you

how I’ve been able to contribute
to this exciting project.

If you go out past
the bright city lights tonight,

you may just be lucky enough
to see a stunning view

of the Milky Way Galaxy.

And if you could zoom past
millions of stars,

26,000 light-years toward the heart
of the spiraling Milky Way,

we’d eventually reach
a cluster of stars right at the center.

Peering past all the galactic dust
with infrared telescopes,

astronomers have watched these stars
for over 16 years.

But it’s what they don’t see
that is the most spectacular.

These stars seem to orbit
an invisible object.

By tracking the paths of these stars,

astronomers have concluded

that the only thing small and heavy
enough to cause this motion

is a supermassive black hole –

an object so dense that it sucks up
anything that ventures too close –

even light.

But what happens if we were
to zoom in even further?

Is it possible to see something
that, by definition, is impossible to see?

Well, it turns out that if we were
to zoom in at radio wavelengths,

we’d expect to see a ring of light

caused by the gravitational
lensing of hot plasma

zipping around the black hole.

In other words,

the black hole casts a shadow
on this backdrop of bright material,

carving out a sphere of darkness.

This bright ring reveals
the black hole’s event horizon,

where the gravitational pull
becomes so great

that not even light can escape.

Einstein’s equations predict
the size and shape of this ring,

so taking a picture of it
wouldn’t only be really cool,

it would also help to verify
that these equations hold

in the extreme conditions
around the black hole.

However, this black hole
is so far away from us,

that from Earth, this ring appears
incredibly small –

the same size to us as an orange
on the surface of the moon.

That makes taking a picture of it
extremely difficult.

Why is that?

Well, it all comes down
to a simple equation.

Due to a phenomenon called diffraction,

there are fundamental limits

to the smallest objects
that we can possibly see.

This governing equation says
that in order to see smaller and smaller,

we need to make our telescope
bigger and bigger.

But even with the most powerful
optical telescopes here on Earth,

we can’t even get close
to the resolution necessary

to image on the surface of the moon.

In fact, here I show one of the highest
resolution images ever taken

of the moon from Earth.

It contains roughly 13,000 pixels,

and yet each pixel would contain
over 1.5 million oranges.

So how big of a telescope do we need

in order to see an orange
on the surface of the moon

and, by extension, our black hole?

Well, it turns out
that by crunching the numbers,

you can easily calculate
that we would need a telescope

the size of the entire Earth.

(Laughter)

If we could build
this Earth-sized telescope,

we could just start to make out
that distinctive ring of light

indicative of the black
hole’s event horizon.

Although this picture wouldn’t contain
all the detail we see

in computer graphic renderings,

it would allow us to safely get
our first glimpse

of the immediate environment
around a black hole.

However, as you can imagine,

building a single-dish telescope
the size of the Earth is impossible.

But in the famous words of Mick Jagger,

“You can’t always get what you want,

but if you try sometimes,
you just might find

you get what you need.”

And by connecting telescopes
from around the world,

an international collaboration
called the Event Horizon Telescope

is creating a computational telescope
the size of the Earth,

capable of resolving structure

on the scale of a black
hole’s event horizon.

This network of telescopes is scheduled
to take its very first picture

of a black hole next year.

Each telescope in the worldwide
network works together.

Linked through the precise timing
of atomic clocks,

teams of researchers at each
of the sites freeze light

by collecting thousands
of terabytes of data.

This data is then processed in a lab
right here in Massachusetts.

So how does this even work?

Remember if we want to see the black hole
in the center of our galaxy,

we need to build this impossibly large
Earth-sized telescope?

For just a second,
let’s pretend we could build

a telescope the size of the Earth.

This would be a little bit
like turning the Earth

into a giant spinning disco ball.

Each individual mirror would collect light

that we could then combine
together to make a picture.

However, now let’s say
we remove most of those mirrors

so only a few remained.

We could still try to combine
this information together,

but now there are a lot of holes.

These remaining mirrors represent
the locations where we have telescopes.

This is an incredibly small number
of measurements to make a picture from.

But although we only collect light
at a few telescope locations,

as the Earth rotates, we get to see
other new measurements.

In other words, as the disco ball spins,
those mirrors change locations

and we get to observe
different parts of the image.

The imaging algorithms we develop
fill in the missing gaps of the disco ball

in order to reconstruct
the underlying black hole image.

If we had telescopes located
everywhere on the globe –

in other words, the entire disco ball –

this would be trivial.

However, we only see a few samples,
and for that reason,

there are an infinite number
of possible images

that are perfectly consistent
with our telescope measurements.

However, not all images are created equal.

Some of those images look more like
what we think of as images than others.

And so, my role in helping to take
the first image of a black hole

is to design algorithms that find
the most reasonable image

that also fits the telescope measurements.

Just as a forensic sketch artist
uses limited descriptions

to piece together a picture using
their knowledge of face structure,

the imaging algorithms I develop
use our limited telescope data

to guide us to a picture that also
looks like stuff in our universe.

Using these algorithms,
we’re able to piece together pictures

from this sparse, noisy data.

So here I show a sample reconstruction
done using simulated data,

when we pretend to point our telescopes

to the black hole
in the center of our galaxy.

Although this is just a simulation,
reconstruction such as this give us hope

that we’ll soon be able to reliably take
the first image of a black hole

and from it, determine
the size of its ring.

Although I’d love to go on
about all the details of this algorithm,

luckily for you, I don’t have the time.

But I’d still like
to give you a brief idea

of how we define
what our universe looks like,

and how we use this to reconstruct
and verify our results.

Since there are an infinite number
of possible images

that perfectly explain
our telescope measurements,

we have to choose
between them in some way.

We do this by ranking the images

based upon how likely they are
to be the black hole image,

and then choosing the one
that’s most likely.

So what do I mean by this exactly?

Let’s say we were trying to make a model

that told us how likely an image
were to appear on Facebook.

We’d probably want the model to say

it’s pretty unlikely that someone
would post this noise image on the left,

and pretty likely that someone
would post a selfie

like this one on the right.

The image in the middle is blurry,

so even though it’s more likely
we’d see it on Facebook

compared to the noise image,

it’s probably less likely we’d see it
compared to the selfie.

But when it comes to images
from the black hole,

we’re posed with a real conundrum:
we’ve never seen a black hole before.

In that case, what is a likely
black hole image,

and what should we assume
about the structure of black holes?

We could try to use images
from simulations we’ve done,

like the image of the black hole
from “Interstellar,”

but if we did this,
it could cause some serious problems.

What would happen
if Einstein’s theories didn’t hold?

We’d still want to reconstruct
an accurate picture of what was going on.

If we bake Einstein’s equations
too much into our algorithms,

we’ll just end up seeing
what we expect to see.

In other words,
we want to leave the option open

for there being a giant elephant
at the center of our galaxy.

(Laughter)

Different types of images have
very distinct features.

We can easily tell the difference
between black hole simulation images

and images we take
every day here on Earth.

We need a way to tell our algorithms
what images look like

without imposing one type
of image’s features too much.

One way we can try to get around this

is by imposing the features
of different kinds of images

and seeing how the type of image we assume
affects our reconstructions.

If all images' types produce
a very similar-looking image,

then we can start to become more confident

that the image assumptions we’re making
are not biasing this picture that much.

This is a little bit like
giving the same description

to three different sketch artists
from all around the world.

If they all produce
a very similar-looking face,

then we can start to become confident

that they’re not imposing their own
cultural biases on the drawings.

One way we can try to impose
different image features

is by using pieces of existing images.

So we take a large collection of images,

and we break them down
into their little image patches.

We then can treat each image patch
a little bit like pieces of a puzzle.

And we use commonly seen puzzle pieces
to piece together an image

that also fits our telescope measurements.

Different types of images have
very distinctive sets of puzzle pieces.

So what happens when we take the same data

but we use different sets of puzzle pieces
to reconstruct the image?

Let’s first start with black hole
image simulation puzzle pieces.

OK, this looks reasonable.

This looks like what we expect
a black hole to look like.

But did we just get it

because we just fed it little pieces
of black hole simulation images?

Let’s try another set of puzzle pieces

from astronomical, non-black hole objects.

OK, we get a similar-looking image.

And then how about pieces
from everyday images,

like the images you take
with your own personal camera?

Great, we see the same image.

When we get the same image
from all different sets of puzzle pieces,

then we can start to become more confident

that the image assumptions we’re making

aren’t biasing the final
image we get too much.

Another thing we can do is take
the same set of puzzle pieces,

such as the ones derived
from everyday images,

and use them to reconstruct
many different kinds of source images.

So in our simulations,

we pretend a black hole looks like
astronomical non-black hole objects,

as well as everyday images like
the elephant in the center of our galaxy.

When the results of our algorithms
on the bottom look very similar

to the simulation’s truth image on top,

then we can start to become
more confident in our algorithms.

And I really want to emphasize here

that all of these pictures were created

by piecing together little pieces
of everyday photographs,

like you’d take with your own
personal camera.

So an image of a black hole
we’ve never seen before

may eventually be created by piecing
together pictures we see all the time

of people, buildings,
trees, cats and dogs.

Imaging ideas like this
will make it possible for us

to take our very first pictures
of a black hole,

and hopefully, verify
those famous theories

on which scientists rely on a daily basis.

But of course, getting
imaging ideas like this working

would never have been possible
without the amazing team of researchers

that I have the privilege to work with.

It still amazes me

that although I began this project
with no background in astrophysics,

what we have achieved
through this unique collaboration

could result in the very first
images of a black hole.

But big projects like
the Event Horizon Telescope

are successful due to all
the interdisciplinary expertise

different people bring to the table.

We’re a melting pot of astronomers,

physicists, mathematicians and engineers.

This is what will make it soon possible

to achieve something
once thought impossible.

I’d like to encourage all of you to go out

and help push the boundaries of science,

even if it may at first seem
as mysterious to you as a black hole.

Thank you.

(Applause)

在电影《星际穿越》中,

我们近距离观察
了一个超大质量黑洞。

在明亮气体的背景下

,黑洞的巨大
引力将

光线弯曲成一个环。

然而,这不是一张真实的照片,

而是一张计算机图形渲染——

对黑洞外观的艺术诠释。

一百年前,

阿尔伯特·爱因斯坦首次发表
了他的广义相对论。

从那以后的几年里,

科学家们提供
了很多证据来支持它。

但是
从这个理论中预测的一件事,黑洞,

仍然没有被直接观察到。

尽管我们对
黑洞的样子有所了解,

但我们之前从未真正
拍过一张照片。

但是,您可能会惊讶地
发现这种情况可能很快就会改变。 在接下来的几年里,

我们可能会看到我们的第一
张黑洞照片。

获得第一张照片将取决于
一个国际科学家团队、

一个地球大小的望远镜

和一个将
最终照片拼凑在一起的算法。

尽管今天我无法向您展示
黑洞的真实照片,但

我想简要介绍一下

获得第一张照片所涉及的工作。

我叫凯蒂·布曼

,是麻省理工学院的博士生。

我在一个计算机科学实验室做研究,该实验室

致力于让计算机
看穿图像和视频。

但是,尽管我不是天文学家,但

今天我想向您

展示我是如何
为这个激动人心的项目做出贡献的。

如果你
今晚走出明亮的城市灯光,

你可能会幸运
地看到银河系的壮丽

景色。

如果你可以放大
数百万颗恒星,

26,000 光年的距离
,朝着螺旋状银河系的中心飞去,

我们最终会到达中心的
一个星团。 天文学家用红外望远镜

凝视着所有的银河尘埃

已经观察了这些
恒星超过 16 年。

但最壮观的是他们没有看到的东西

这些恒星似乎围绕着
一个看不见的物体运行。

通过追踪这些恒星的路径,

天文学家得出结论

,唯一足以引起这种运动的小而重的东西

是一个超大质量黑洞——

一个如此密集的物体,它会吸收任何靠得太近的物体
——

甚至是光。

但是,如果我们
进一步放大会发生什么?

是否有可能
看到根据定义是不可能看到的东西?

好吧,事实证明,如果
我们放大无线电波长,

我们预计会看到一个

由热等离子体的引力透镜引起的光环,它在

黑洞周围飞驰。

换句话说

,黑洞
在明亮物质的背景上

投下了阴影,形成了一个黑暗的球体。

这个明亮的环揭示
了黑洞的事件视界,

那里的引力
变得如此之大

,以至于连光都无法逃脱。

爱因斯坦的方程预测
了这个环的大小和形状,

所以给它拍照
不仅很酷,

还有助于
验证这些方程

在黑洞周围的极端条件下是否成立

然而,这个黑洞
离我们太远了

,从地球上看,这个环看起来
非常小——

对我们来说,它的大小就像月球表面的橙色一样大

这使得拍摄它
非常困难。

这是为什么?

好吧,这一切都归结
为一个简单的方程式。

由于一种称为衍射的现象

,我们可能看到的最小物体存在基本限制。

这个控制方程
表明,为了看到越来越小,

我们需要让我们的望远镜
越来越大。

但即使使用地球上最强大的
光学望远镜,

我们甚至无法接近

在月球表面成像所需的分辨率。

事实上,在这里我展示了有史以来

从地球拍摄的最高分辨率的月球图像之一。

它包含大约 13,000 个像素

,但每个像素将包含
超过 150 万个橙子。

那么,我们需要多大的望远镜

才能看到
月球表面

的橙色,进而看到我们的黑洞?

好吧,事实证明
,通过计算这些数字,

你可以很容易地计算
出我们需要一个

与整个地球一样大的望远镜。

(笑声)

如果我们能建造
这个地球大小的望远镜,

我们就能开始辨认出

代表
黑洞视界的独特光环。

虽然这张图片不会包含
我们

在计算机图形渲染中看到的所有细节,

但它可以让我们安全地
第一眼看到

黑洞周围的直接环境。

然而,正如你可以想象的那样,

建造一个
地球大小的单碟望远镜是不可能的。

但用 Mick Jagger 的名言:

“你不能总是得到你想要的,

但如果你有时尝试,
你可能会发现

你得到了你需要的。”

通过连接
来自世界各地的望远镜,

一项
名为“视界望远镜”的国际合作

正在创建一个
地球大小的计算望远镜,

能够解析

黑洞视界规模的结构

这个望远镜网络计划
于明年拍摄第一

张黑洞照片。

全球网络中的每台望远镜都
协同工作。

通过原子钟的精确
计时,

每个站点的研究人员团队

通过收集
数千 TB 的数据来冻结光。

然后在马萨诸塞州的一个实验室中处理这些数据

那么这甚至是如何工作的呢?

还记得如果我们想看到
银河系中心的黑洞,

我们需要建造这个不可能像
地球那么大的望远镜吗?

让我们假设我们可以建造

一个地球大小的望远镜。

这有点
像把地球

变成一个巨大的旋转迪斯科球。

每个单独的镜子都会收集光线

,然后我们可以将
这些光线组合在一起制作一张照片。

但是,现在假设
我们移除了大部分镜像,

因此只剩下少数几个。

我们仍然可以尝试将
这些信息组合在一起,

但现在有很多漏洞。

这些剩余的镜子代表
我们拥有望远镜的位置。

这是
用于制作图片的非常少的测量值。

但是,尽管我们只
在几个望远镜位置收集光,但

随着地球的旋转,我们会看到
其他新的测量结果。

换句话说,随着迪斯科球的旋转,
这些镜子会改变位置

,我们可以观察
到图像的不同部分。

我们开发的成像算法
填补了迪斯科球缺失的空白,


重建底层黑洞图像。

如果我们在全球各地都有望远镜

——换句话说,整个迪斯科舞会——

这将是微不足道的。

然而,我们只看到了几个样本
,因此,


无数可能的图像

与我们的望远镜测量结果完全一致。

但是,并非所有图像都是平等的。

其中一些图像看起来更像
我们认为的图像而不是其他图像。

因此,我在帮助
拍摄第一张黑洞图像中的作用

是设计算法,
找到最合理的图像

,同时也适合望远镜测量。

就像法医素描艺术家
使用有限的描述

来利用
他们对面部结构的知识拼凑一张图片一样,

我开发的成像算法
使用我们有限的望远镜数据

来引导我们找到一张看起来也
像我们宇宙中的东西的图片。

使用这些算法,
我们能够

从这些稀疏、嘈杂的数据中拼凑出图片。

所以在这里我展示了
使用模拟数据完成的样本重建,

当我们假装将望远镜指向

银河系中心的黑洞时。

虽然这只是一个模拟,但
像这样的重建让我们希望

很快能够可靠地拍摄
黑洞的第一张图像,

并从中确定
其环的大小。

虽然我很想继续
讨论这个算法的所有细节,但

幸运的是,我没有时间。

但我仍然
想简要

介绍一下我们如何定义
我们的宇宙是什么样子,

以及我们如何使用它来重建
和验证我们的结果。

由于有
无数可能的图像

可以完美地解释
我们的望远镜测量结果,

我们必须
以某种方式在它们之间进行选择。

我们通过根据图像

成为黑洞图像的可能性对图像进行排名,

然后选择
最有可能的图像来做到这一点。

那么我到底是什么意思呢?

假设我们正在尝试制作一个模型

,告诉我们一张
图片出现在 Facebook 上的可能性有多大。

我们可能希望模型表明

不太可能有人
会在左侧发布这张噪点图像,

并且很可能有人
会在右侧发布这样的自拍照

中间的图像是模糊的,

因此即使与噪点图像相比,
我们在 Facebook 上看到

它的可能性更大,但与自拍相比,我们看到它的可能性更小

但是当谈到来自黑洞的图像时

我们面临着一个真正的难题:
我们以前从未见过黑洞。

在那种情况下,什么是可能的
黑洞图像

,我们应该假设
黑洞的结构是什么?

我们可以尝试使用
我们已经完成的模拟

的图像,比如
“星际”中的黑洞图像,

但如果我们这样做,
可能会导致一些严重的问题。

如果爱因斯坦的理论不成立,会发生什么?

我们仍然想重建
一幅关于正在发生的事情的准确画面。

如果我们将爱因斯坦方程
过多地融入我们的算法中,

我们最终只会
看到我们期望看到的东西。

换句话说,
我们希望让

我们的银河系中心有一头巨象的选项保持开放。

(笑声)

不同类型的图像具有
非常明显的特征。

我们可以很容易地分辨出
黑洞模拟

图像和我们
每天在地球上拍摄的图像之间的区别。

我们需要一种方法来告诉我们的算法
图像是什么样的,

而不会
过多地强加一种图像的特征。

我们可以尝试解决这个问题的一种方法

是强加
不同类型图像的特征,

并查看我们假设的图像类型如何
影响我们的重建。

如果所有图像的类型都产生
了一个看起来非常相似的图像,

那么我们就可以开始变得更有信心

,我们所做的图像假设
不会对这张图片产生太大的偏见。

这有点像
对来自世界各地的

三位不同的素描艺术家进行相同的描述

如果他们都产生
了一张非常相似的脸,

那么我们就可以开始

确信他们没有将自己的
文化偏见强加在图纸上。

我们可以尝试施加
不同图像特征的一种方法

是使用现有图像的片段。

所以我们收集了大量的图像,

并将它们分解
成小的图像块。

然后,我们可以将每个图像
块视为拼图的一部分。

我们使用常见的拼图
拼凑出

一幅也适合我们望远镜测量的图像。

不同类型的图像具有
非常独特的拼图集。

那么当我们获取相同的数据

但我们使用不同的拼图集
来重建图像时会发生什么?

让我们首先从黑洞
图像模拟拼图开始。

好的,这看起来很合理。

这看起来就像我们期望
的黑洞的样子。

但是我们得到它

是不是因为我们只是给它喂了一
小块黑洞模拟图像?

让我们尝试另一组

来自天文非黑洞物体的拼图。

好的,我们得到了一个相似的图像。

那么
来自日常图像的片段呢,

比如你
用自己的个人相机拍摄的图像?

太好了,我们看到了相同的图像。

当我们
从所有不同的拼图组中获得相同的图像时

,我们就可以开始变得更有信心

,我们所做的图像假设

不会对
我们得到的最终图像产生太大的偏差。

我们可以做的另一件事是
获取同一组拼图,

例如
从日常图像中提取的拼图,

并使用它们来重建
许多不同类型的源图像。

所以在我们的模拟中,

我们假设一个黑洞看起来像
天文非黑洞物体,

以及像
银河系中心的大象这样的日常图像。

当底部的算法结果
看起来与

顶部的模拟真实图像非常相似时

,我们就可以开始对
我们的算法更有信心了。

我真的想在这里

强调,所有这些照片都是

通过将日常照片的小片段拼凑而成的

就像你用自己的
个人相机拍摄的一样。

因此,
我们

可能会通过将
我们一直看到

的人、建筑物、
树木、猫和狗的图片拼凑起来,最终创建出一张我们以前从未见过的黑洞图像。

像这样的成像想法
将使我们有可能

拍摄我们的第一
张黑洞照片,

并有望验证

科学家每天依赖的那些著名理论。

但是,当然,

如果没有我有幸与之合作
的令人惊叹的研究人员团队,就不可能获得像这样的成像想法

令我惊讶的

是,尽管我
在没有天体物理学背景的情况下开始了这个项目,但

我们通过这种独特的合作所取得的成就

可能会产生第一
张黑洞的图像。

但是
像事件视界望远镜这样的大型项目

之所以成功,是因为不同的人带来了
所有跨学科的专业

知识。

我们是天文学家、

物理学家、数学家和工程师的大熔炉。

这将很快实现

曾经被认为不可能的事情。

我想鼓励你们所有人走出去

,帮助推动科学的界限,

即使起初对你们来说它可能
像黑洞一样神秘。

谢谢你。

(掌声)