How we can turn the cold of outer space into a renewable resource Aaswath Raman

Every summer when I was growing up,

I would fly from my home in Canada
to visit my grandparents,

who lived in Mumbai, India.

Now, Canadian summers
are pretty mild at best –

about 22 degrees Celsius
or 72 degrees Fahrenheit

is a typical summer’s day,
and not too hot.

Mumbai, on the other hand,
is a hot and humid place

well into the 30s Celsius
or 90s Fahrenheit.

As soon as I’d reach it, I’d ask,

“How could anyone live, work
or sleep in such weather?”

To make things worse, my grandparents
didn’t have an air conditioner.

And while I tried my very, very best,

I was never able
to persuade them to get one.

But this is changing, and fast.

Cooling systems today
collectively account for 17 percent

of the electricity we use worldwide.

This includes everything
from the air conditioners

I so desperately wanted
during my summer vacations,

to the refrigeration systems
that keep our food safe and cold for us

in our supermarkets,

to the industrial scale systems
that keep our data centers operational.

Collectively, these systems
account for eight percent

of global greenhouse gas emissions.

But what keeps me up at night

is that our energy use for cooling
might grow sixfold by the year 2050,

primarily driven by increasing usage
in Asian and African countries.

I’ve seen this firsthand.

Nearly every apartment
in and around my grandmother’s place

now has an air conditioner.

And that is, emphatically, a good thing

for the health, well-being
and productivity

of people living in warmer climates.

However, one of the most
alarming things about climate change

is that the warmer our planet gets,

the more we’re going to need
cooling systems –

systems that are themselves large
emitters of greenhouse gas emissions.

This then has the potential
to cause a feedback loop,

where cooling systems alone

could become one of our biggest sources
of greenhouse gases

later this century.

In the worst case,

we might need more than 10 trillion
kilowatt-hours of electricity every year,

just for cooling, by the year 2100.

That’s half our electricity supply today.

Just for cooling.

But this also point us
to an amazing opportunity.

A 10 or 20 percent improvement
in the efficiency of every cooling system

could actually have an enormous impact
on our greenhouse gas emissions,

both today and later this century.

And it could help us avert
that worst-case feedback loop.

I’m a scientist who thinks a lot
about light and heat.

In particular, how new materials
allow us to alter the flow

of these basic elements of nature

in ways we might have
once thought impossible.

So, while I always understood
the value of cooling

during my summer vacations,

I actually wound up
working on this problem

because of an intellectual puzzle
that I came across about six years ago.

How were ancient peoples
able to make ice in desert climates?

This is a picture of an ice house,

also called a Yakhchal,
located in the southwest of Iran.

There are ruins of dozens
of such structures throughout Iran,

with evidence of similar such buildings
throughout the rest of the Middle East

and all the way to China.

The people who operated
this ice house many centuries ago,

would pour water
in the pool you see on the left

in the early evening hours,
as the sun set.

And then something amazing happened.

Even though the air temperature
might be above freezing,

say five degrees Celsius
or 41 degrees Fahrenheit,

the water would freeze.

The ice generated would then be collected
in the early morning hours

and stored for use in the building
you see on the right,

all the way through the summer months.

You’ve actually likely seen
something very similar at play

if you’ve ever noticed frost form
on the ground on a clear night,

even when the air temperature
is well above freezing.

But wait.

How did the water freeze
if the air temperature is above freezing?

Evaporation could have played an effect,

but that’s not enough to actually
cause the water to become ice.

Something else must have cooled it down.

Think about a pie
cooling on a window sill.

For it to be able to cool down,
its heat needs to flow somewhere cooler.

Namely, the air that surrounds it.

As implausible as it may sound,

for that pool of water, its heat
is actually flowing to the cold of space.

How is this possible?

Well, that pool of water,
like most natural materials,

sends out its heat as light.

This is a concept
known as thermal radiation.

In fact, we’re all sending out our heat
as infrared light right now,

to each other and our surroundings.

We can actually visualize this
with thermal cameras

and the images they produce,
like the ones I’m showing you right now.

So that pool of water
is sending out its heat

upward towards the atmosphere.

The atmosphere and the molecules in it

absorb some of that heat and send it back.

That’s actually the greenhouse effect
that’s responsible for climate change.

But here’s the critical thing
to understand.

Our atmosphere doesn’t absorb
all of that heat.

If it did, we’d be
on a much warmer planet.

At certain wavelengths,

in particular between
eight and 13 microns,

our atmosphere has what’s known
as a transmission window.

This window allows some of the heat
that goes up as infrared light

to effectively escape,
carrying away that pool’s heat.

And it can escape to a place
that is much, much colder.

The cold of this upper atmosphere

and all the way out to outer space,

which can be as cold
as minus 270 degrees Celsius,

or minus 454 degrees Fahrenheit.

So that pool of water is able
to send out more heat to the sky

than the sky sends back to it.

And because of that,

the pool will cool down
below its surroundings' temperature.

This is an effect
known as night-sky cooling

or radiative cooling.

And it’s always been understood
by climate scientists and meteorologists

as a very important natural phenomenon.

When I came across all of this,

it was towards the end
of my PhD at Stanford.

And I was amazed by its apparent
simplicity as a cooling method,

yet really puzzled.

Why aren’t we making use of this?

Now, scientists and engineers
had investigated this idea

in previous decades.

But there turned out to be
at least one big problem.

It was called night-sky
cooling for a reason.

Why?

Well, it’s a little thing called the sun.

So, for the surface
that’s doing the cooling,

it needs to be able to face the sky.

And during the middle of the day,

when we might want
something cold the most,

unfortunately, that means
you’re going to look up to the sun.

And the sun heats most materials up

enough to completely counteract
this cooling effect.

My colleagues and I
spend a lot of our time

thinking about how
we can structure materials

at very small length scales

such that they can do
new and useful things with light –

length scales smaller
than the wavelength of light itself.

Using insights from this field,

known as nanophotonics
or metamaterials research,

we realized that there might be a way
to make this possible during the day

for the first time.

To do this, I designed
a multilayer optical material

shown here in a microscope image.

It’s more than 40 times thinner
than a typical human hair.

And it’s able to do
two things simultaneously.

First, it sends its heat out

precisely where our atmosphere
lets that heat out the best.

We targeted the window to space.

The second thing it does
is it avoids getting heated up by the sun.

It’s a very good mirror to sunlight.

The first time I tested this
was on a rooftop in Stanford

that I’m showing you right here.

I left the device out for a little while,

and I walked up to it after a few minutes,

and within seconds, I knew it was working.

How?

I touched it, and it felt cold.

(Applause)

Just to emphasize how weird
and counterintuitive this is:

this material and others like it

will get colder when we take them
out of the shade,

even though the sun is shining on it.

I’m showing you data here
from our very first experiment,

where that material stayed
more than five degrees Celsius,

or nine degrees Fahrenheit, colder
than the air temperature,

even though the sun
was shining directly on it.

The manufacturing method we used
to actually make this material

already exists at large volume scales.

So I was really excited,

because not only
do we make something cool,

but we might actually have the opportunity
to do something real and make it useful.

That brings me to the next big question.

How do you actually
save energy with this idea?

Well, we believe the most direct way
to save energy with this technology

is as an efficiency boost

for today’s air-conditioning
and refrigeration systems.

To do this, we’ve built
fluid cooling panels,

like the ones shown right here.

These panels have a similar shape
to solar water heaters,

except they do the opposite –
they cool the water, passively,

using our specialized material.

These panels can then
be integrated with a component

almost every cooling system has,
called a condenser,

to improve the system’s
underlying efficiency.

Our start-up, SkyCool Systems,

has recently completed a field trial
in Davis, California, shown right here.

In that demonstration,

we showed that we could actually
improve the efficiency

of that cooling system
as much as 12 percent in the field.

Over the next year or two,

I’m super excited to see this go
to its first commercial-scale pilots

in both the air conditioning
and refrigeration space.

In the future, we might be able
to integrate these kinds of panels

with higher efficiency
building cooling systems

to reduce their energy
usage by two-thirds.

And eventually, we might actually
be able to build a cooling system

that requires no electricity input at all.

As a first step towards that,

my colleagues at Stanford and I

have shown that you could
actually maintain

something more than 42 degrees Celsius
below the air temperature

with better engineering.

Thank you.

(Applause)

So just imagine that –

something that is below freezing
on a hot summer’s day.

So, while I’m very excited
about all we can do for cooling,

and I think there’s a lot yet to be done,

as a scientist, I’m also drawn
to a more profound opportunity

that I believe this work highlights.

We can use the cold darkness of space

to improve the efficiency

of every energy-related
process here on earth.

One such process
I’d like to highlight are solar cells.

They heat up under the sun

and become less efficient
the hotter they are.

In 2015, we showed that
with deliberate kinds of microstructures

on top of a solar cell,

we could take better advantage
of this cooling effect

to maintain a solar cell passively
at a lower temperature.

This allows the cell
to operate more efficiently.

We’re probing these kinds
of opportunities further.

We’re asking whether
we can use the cold of space

to help us with water conservation.

Or perhaps with off-grid scenarios.

Perhaps we could even directly
generate power with this cold.

There’s a large temperature difference
between us here on earth

and the cold of space.

That difference, at least conceptually,

could be used to drive
something called a heat engine

to generate electricity.

Could we then make a nighttime
power-generation device

that generates useful
amounts of electricity

when solar cells don’t work?

Could we generate light from darkness?

Central to this ability
is being able to manage

the thermal radiation
that’s all around us.

We’re constantly bathed in infrared light;

if we could bend it to our will,

we could profoundly change
the flows of heat and energy

that permeate around us every single day.

This ability, coupled
with the cold darkness of space,

points us to a future
where we, as a civilization,

might be able to more intelligently manage
our thermal energy footprint

at the very largest scales.

As we confront climate change,

I believe having
this ability in our toolkit

will prove to be essential.

So, the next time
you’re walking around outside,

yes, do marvel at how the sun
is essential to life on earth itself,

but don’t forget that the rest of the sky
has something to offer us as well.

Thank you.

(Applause)

长大后的每个夏天,

我都会从加拿大的家中飞去
探望

住在印度孟买的祖父母。

现在,加拿大的夏天
充其量是相当温和的——

大约 22 摄氏度
或 72 华氏度

是一个典型的夏日,
而且不太热。

另一方面,孟买
是一个炎热潮湿的

地方,温度高达 30 摄氏度
或 90 华氏度。

一旦我到达它,我就会问:

“在这样的天气里,怎么会有人生活、工作
或睡觉呢?”

更糟糕的是,我的祖父母
没有空调。

虽然我尽了最大的努力,但

我始终
无法说服他们买一个。

但这种情况正在发生变化,而且速度很快。

今天,冷却系统
总共占

我们全球用电量的 17%。

这包括一切,

我暑假期间迫切需要的空调,

到在超市中
为我们保证食品安全和冷藏的制冷系统,

再到
让我们的数据中心保持运行的工业规模系统。

总的来说,这些系统

占全球温室气体排放量的 8%。

但让我彻夜难眠的

是,到 2050 年,我们用于制冷的能源使用量
可能会增长六倍,这

主要是由于
亚洲和非洲国家使用量的增加。

我亲眼目睹了这一点。

现在几乎
我祖母家及其周围的每间公寓

都装有空调。

这对于

生活在温暖气候中的人们的健康、福祉和生产力来说,无疑是一件好事。

然而,
关于气候变化的最令人担忧的事情之一

是,我们的星球变得越暖和,

我们就越需要
冷却系统——这些

系统本身
就是温室气体排放的大排放者。

这有可能
导致反馈循环

,仅冷却系统就

可能成为本世纪后期我们最大
的温室气体来源之一

在最坏的情况下,到 2100 年,

我们每年可能需要超过 10 万
亿千瓦时的电力,

仅用于冷却。

这是我们今天电力供应的一半。

只是为了冷却。

但这也为我们指出
了一个惊人的机会。

每个冷却系统的效率提高 10% 或 20%

实际上可能
对我们

今天和本世纪后期的温室气体排放产生巨大影响。

它可以帮助我们
避免最坏情况的反馈循环。

我是一位对光和热有很多思考的科学家

特别是,新材料如何
让我们以我们曾经认为不可能的方式改变

这些自然基本元素的流动

所以,虽然我总是明白

在暑假期间降温的价值,但

我实际上是

因为
大约六年前遇到的一个智力难题而最终解决了这个问题。

古代人是
如何在沙漠气候中制冰的?

这是一张冰屋的照片,

也称为 Yakhchal,
位于伊朗西南部。

伊朗各地都有数十座此类建筑的废墟,

中东其他地区

乃至中国都有类似此类建筑的证据。

许多世纪前经营这座冰屋的人

会在傍晚时分,在太阳落山时将水倒入
您在左侧看到的水池中

然后不可思议的事情发生了。

即使气温
可能高于冰点,

比如 5 摄氏度
或 41 华氏度

,水也会结冰。

然后,产生的冰将
在清晨收集

并储存在
您在右侧看到的建筑物中

,在整个夏季期间一直使用。

如果您曾经
在晴朗的夜晚注意到地面上形成霜冻,

即使
气温远高于冰点,您实际上可能已经看到了非常相似的东西。

可是等等。

如果气温高于冰点,水是如何结冰的?

蒸发可能会产生影响,

但这还不足以真正
导致水变成冰。

一定是别的什么东西把它冷却下来了。

想想
在窗台上冷却的馅饼。

为了让它能够冷却下来,
它的热量需要流向更冷的地方。

也就是说,它周围的空气。

尽管听起来难以置信,但

对于那一池水来说,它的
热量实际上正在流向寒冷的太空。

这怎么可能?

嗯,那一池水,
就像大多数天然材料一样,

以光的形式散发出热量。

这是一个
被称为热辐射的概念。

事实上,我们现在都在
以红外线的形式

向彼此和周围环境散发热量。

我们实际上可以
用热像仪

和它们产生的图像来可视
化这一点,就像我现在向你展示的那样。

所以那个水池
正在

向上向大气散发热量。

大气和其中的分子

吸收一些热量并将其送回。

这实际上
是造成气候变化的温室效应。

但这是
要理解的关键。

我们的大气层不会吸收
所有的热量。

如果是这样,我们将
在一个更温暖的星球上。

在某些波长下

,特别是在
8 到 13 微米之间,

我们的大气具有
所谓的透射窗口。

这个窗口允许一些
作为红外光上升的热量

有效地逸出,
带走水池的热量。

它可以逃到
一个更冷的地方。

上层大气的寒冷

一直延伸到外层空间,

其温度可
低至零下 270 摄氏度

或零下 454 华氏度。

因此,那一池水

向天空发出的热量比天空返回给它的热量还多。

正因为如此

,游泳池将冷却到
低于周围环境的温度。

这是一种
称为夜空冷却

或辐射冷却的效应。

它一直
被气候科学家和气象学家理解

为一种非常重要的自然现象。

当我遇到这一切时

,是在
我在斯坦福大学攻读博士学位的时候。

我对它
作为一种冷却方法的表面上的简单

性感到惊讶,但真的很困惑。

我们为什么不利用这个?

现在,科学家和工程师

在过去几十年里研究了这个想法。

但事实证明
,至少存在一个大问题。

它被称为夜空
冷却是有原因的。

为什么?

嗯,这是一个叫做太阳的小东西。

因此,对于
进行冷却的表面,

它需要能够面向天空。

不幸的是,在中午

,我们可能
最想要冷的东西

,这意味着
你要仰望太阳。

太阳将大多数材料加热到

足以完全抵消
这种冷却效应。

我和我的同事们
花了很多时间

思考如何

以非常小的长度尺度构造

材料,以便它们可以
用光做新的有用的事情——

长度尺度
小于光本身的波长。

利用这一领域的见解

,即纳米光子学
或超材料研究,

我们意识到可能有一种
方法可以在白天首次实现这一点

为此,我设计
了一种多层光学材料,

显示在显微镜图像中。


比典型的人类头发还要细 40 倍以上。

它能够
同时做两件事。

首先,它将热量

精确地散发到我们的大气
最能释放热量的地方。

我们将窗口定位到空间。

它所做的第二件事
是避免被太阳加热。

它是一面很好的阳光镜子。

我第一次测试这个
是在斯坦福的屋顶上

,我在这里向你展示。

我把设备放在外面一会儿,

几分钟后我走到它面前,几

秒钟之内,我知道它正在工作。

如何?

我摸了摸,感觉很冷。

(掌声)

只是为了强调这是多么的奇怪
和违反直觉:

这种材料和其他类似的材料,

当我们把它们从阴凉处拿出来时,它们会变得更冷

即使阳光照在它上面。

我在这里向您展示
我们第一次实验的数据,

其中材料保持
超过 5 摄氏度

或 9 华氏度,
比空气温度低,

即使
阳光直接照射在它上面。

我们
用于实际制造这种材料的制造方法

已经大规模存在。

所以我真的很兴奋,

因为
我们不仅做一些很酷的东西,

而且我们实际上可能有
机会做一些真实的事情并让它变得有用。

这让我想到了下一个大问题。

您如何
通过这个想法实际节省能源?

好吧,我们相信
使用这项技术

最直接的节能方法是

提高当今空调
和制冷系统的效率。

为此,我们构建了
流体冷却面板,

就像这里展示的那样。

这些面板的形状
与太阳能热水器相似,

只是它们的作用相反——
它们

使用我们的专用材料被动地冷却水。

然后,这些面板
可以与

几乎每个冷却系统都有的组件(
称为冷凝器)集成,

以提高系统的
基本效率。

我们的初创公司 SkyCool Systems

最近
在加利福尼亚州戴维斯市完成了现场试验,如图所示。

在该演示中,

我们展示了我们实际上可以在现场

将该冷却系统的效率提高
多达 12%。

在接下来的一两年里,

我很高兴看到
它在空调和制冷领域进行了首批商业规模的试点

未来,我们或许
能够将这些类型的面板

与更高效的
建筑冷却系统集成,

从而将其能源
使用量减少三分之二。

最终,我们实际上
可能能够建立一个

完全不需要电力输入的冷却系统。

作为实现这一目标的第一步

,我和斯坦福大学的同事

已经证明,通过更好的工程设计,你
实际上可以将

气温保持在低于气温 42 摄氏度以上

谢谢你。

(掌声)

所以想象一下——

在炎热的夏天,温度低于冰点。

因此,虽然我对
我们可以为冷却所做的一切感到非常兴奋,

而且我认为还有很多工作要做,但

作为一名科学家,我也
被一个更深刻的机会

所吸引,我相信这项工作突出了这一点。

我们可以利用太空的寒冷黑暗

来提高地球

上每个与能源相关的
过程的效率。

我想强调的一个这样的过程是太阳能电池。

它们在阳光

下变
热,温度越高效率越低。

2015 年,我们展示了
通过在太阳能电池顶部精心设计的各种微结构

我们可以更好地
利用这种冷却效应

将太阳能电池被动地保持
在较低温度。

这允许电池
更有效地运行。

我们正在
进一步探索这些机会。

我们在问
我们是否可以利用太空的寒冷

来帮助我们节约用水。

或者可能是离网场景。

也许我们甚至可以
用这种寒冷直接发电。

我们在地球上

和太空的寒冷之间有很大的温差。

这种差异,至少在概念上,

可以用来驱动
一种叫做热机的东西

来发电。

那么我们能否制造一种夜间
发电装置

在太阳能电池不工作时产生有用的电量?

我们能从黑暗中产生光明吗?

这种能力的核心
是能够管理

我们周围的热辐射。

我们经常沐浴在红外线中;

如果我们能够按照自己的意愿弯曲它,

我们就可以深刻地改变

每天弥漫在我们周围的热量和能量的流动。

这种能力,再加
上太空的寒冷黑暗,为

我们指明了一个未来
,作为一个文明,我们

可能能够更智能地管理
我们

在最大尺度上的热能足迹。

当我们面对气候变化时,

我相信
在我们的工具包中拥有这种能力

将被证明是必不可少的。

所以,下次
你在外面走来走去的时候,

是的,一定要惊叹于太阳
对地球上生命的重要性,

但不要忘记天空的其余部分
也可以为我们提供一些东西。

谢谢你。

(掌声)