Need a new idea Start at the edge of what is known Vittorio Loreto

We have all probably wondered

how great minds achieved
what they achieved, right?

And the more astonishing
their achievements are,

the more we call them geniuses,

perhaps aliens

coming from a different planet,

definitely not someone like us.

But is that true?

So let me start with an example.

You all know the story
of Newton’s apple, right? OK.

Is that true? Probably not.

Still, it’s difficult to think
that no apple at all was there.

I mean some stepping stone,
some specific conditions

that made universal gravitation
not impossible to conceive.

And definitely this was not impossible,

at least for Newton.

It was possible,

and for some reason, it was also there,

available at some point,
easy to pick as an apple.

Here is the apple.

And what about Einstein?

Was relativity theory another big leap
in the history of ideas

no one else could even conceive?

Or rather, was it again
something adjacent and possible,

to Einstein of course,

and he got there by small steps
and his very peculiar scientific path?

Of course we cannot conceive this path,

but this doesn’t mean
that the path was not there.

So all of this seems very evocative,

but I would say hardly concrete

if we really want to grasp
the origin of great ideas

and more generally the way
in which the new enters our lives.

As a physicist, as a scientist,

I have learned that posing
the right questions

is half of the solution.

But I think now we start having
a great conceptual framework

to conceive and address
the right questions.

So let me drive you
to the edge of what is known,

or at least, what I know,

and let me show you that what is known

could be a powerful
and fascinating starting point

to grasp the deep meaning
of words like novelty, innovation,

creativity perhaps.

So we are discussing the “new,”

and of course, the science behind it.

The new can enter our lives
in many different ways,

can be very personal,

like I meet a new person,

I read a new book,
or I listen to a new song.

Or it could be global,

I mean, something we call innovation.

It could be a new theory,
a new technology,

but it could also be a new book
if you’re the writer,

or it could be a new song
if you’re the composer.

In all of these global cases,
the new is for everyone,

but experiencing the new
can be also frightening,

so the new can also frighten us.

But still, experiencing the new
means exploring a very peculiar space,

the space of what could be,

the space of the possible,
the space of possibilities.

It’s a very weird space,
so I’ll try to get you through this space.

So it could be a physical space.

So in this case, for instance,

novelty could be climbing
Machu Picchu for the first time,

as I did in 2016.

It could be a conceptual space,

so acquiring new information,
making sense of it, in a word, learning.

It could be a biological space.

I mean, think about the never-ending
fight of viruses and bacteria

with our immune system.

And now comes the bad news.

We are very, very bad
at grasping this space.

Think of it. Let’s make an experiment.

Try to think about all the possible things
you could do in the next, say, 24 hours.

Here the key word is “all.”

Of course you can conceive a few options,
like having a drink, writing a letter,

also sleeping during this boring talk,

if you can.

But not all of them.

So think about an alien invasion,
now, here, in Milan,

or me – I stopped thinking
for 15 minutes.

So it’s very difficult
to conceive this space,

but actually we have an excuse.

So it’s not so easy to conceive this space

because we are trying to conceive
the occurrence of something brand new,

so something that never occurred before,

so we don’t have clues.

A typical solution could be

looking at the future
with the eyes of the past,

so relying on all
the time series of past events

and hoping that this is enough
to predict the future.

But we know this is not working.

For instance, this was the first attempt
for weather forecasts, and it failed.

And it failed because
of the great complexity

of the underlying phenomenon.

So now we know that predictions
had to be based on modeling,

which means creating
a synthetic model of the system,

simulating this model
and then projecting the system

into the future through this model.

And now we can do this in a lot of cases

with the help of a lot of data.

Looking at the future
with the eye of the past

could be misleading also for machines.

Think about it.

Now picture yourself for a second
in the middle of the Australian Outback.

You stand there under the sun.

So you see something weird happening.

The car suddenly stops

very, very far from a kangaroo
crossing the street.

You look closer

and you realize
that the car has no driver.

It is not restarting, even after
the kangaroo is not there anymore.

So for some reasons,

the algorithms driving the car
cannot make sense

of this strange beast
jumping here and there on the street.

So it just stops.

Now, I should tell you,
this is a true story.

It happened a few months ago
to Volvo’s self-driving cars

in the middle of the Australian Outback.

(Laughter)

It is a general problem,

and I guess this will affect
more and more in the near future

artificial intelligence
and machine learning.

It’s also a very old problem,
I would say 17th century,

but I guess now we have new tools
and new clues to start solving it.

So let me take a step back,

five years back.

Italy. Rome. Winter.

So the winter of 2012
was very special in Rome.

Rome witnessed one of the greatest
snowfalls of its history.

That winter was special also
for me and my colleagues,

because we had an insight
about the possible mathematical scheme –

again, possible,
possible mathematical scheme,

to conceive the occurrence of the new.

I remember that day
because it was snowing,

so due to the snowfall,
we were blocked, stuck in my department,

and we couldn’t go home,

so we got another coffee, we relaxed

and we kept discussing.

But at some point –
maybe not that date, precisely –

at some point we made the connection

between the problem of the new

and a beautiful concept
proposed years before

by Stuart Kauffman,

the adjacent possible.

So the adjacent possible
consists of all those things.

It could be ideas, it could be molecules,
it could be technological products

that are one step away

from what actually exists,

and you can achieve them
through incremental modifications

and recombinations
of the existing material.

So for instance, if I speak
about the space of my friends,

my adjacent possible would be
the set of all friends of my friends

not already my friends.

I hope that’s clear.

But now if I meet a new person,

say Briar,

all her friends would immediately enter
my adjacent possible,

pushing its boundaries further.

So if you really want to look
from the mathematical point of view –

I’m sure you want –

you can actually look at this picture.

So suppose now this is your universe.

I know I’m asking a lot.

I mean, this is your universe.
Now you are the red spot.

And the green spot
is the adjacent possible for you,

so something you’ve never touched before.

So you do your normal life.

You move. You move in the space.

You have a drink.
You meet friends. You read a book.

At some point,
you end up on the green spot,

so you meet Briar for the first time.

And what happens?

So what happens is there is a new part,

a brand new part of the space,

becoming possible for you
in this very moment,

even without any possibility
for you to foresee this

before touching that point.

And behind this there will be
a huge set of points

that could become possible
at some later stages.

So you see the space
of the possible is very peculiar,

because it’s not predefined.

It’s not something we can predefine.

It’s something that gets
continuously shaped and reshaped

by our actions and our choices.

So we were so fascinated
by these connections we made –

scientists are like this.

And based on this,

we conceived our mathematical formulation
for the adjacent possible,

20 years after the original
Kauffman proposals.

In our theory – this is a key point –

I mean, it’s crucially based
on a complex interplay

between the way in which
this space of possibilities expands

and gets restructured,

and the way in which we explore it.

After the epiphany of 2012,

we got back to work, real work,

because we had to work out this theory,

and we came up with
a certain number of predictions

to be tested in real life.

Of course, we need a testable framework

to study innovation.

So let me drive you
across a few predictions we made.

The first one concerns
the pace of innovation,

so the rate at which you observe novelties
in very different systems.

So our theory predicts
that the rate of innovation

should follow a universal curve,

like this one.

This is the rate of innovation versus time
in very different conditions.

And somehow, we predict
that the rate of innovation

should decrease steadily over time.

So somehow, innovation
is predicted to become more difficult

as your progress over time.

It’s neat. It’s interesting.
It’s beautiful. We were happy.

But the question is, is that true?

Of course we should check with reality.

So we went back to reality

and we collected a lot of data,
terabytes of data,

tracking innovation in Wikipedia, Twitter,

the way in which we write free software,

even the way we listen to music.

I cannot tell you, we were
so amazed and pleased and thrilled

to discover that the same predictions
we made in the theory

were actually satisfied in real systems,

many different real systems.

We were so excited.

Of course, apparently,
we were on the right track,

but of course, we couldn’t stop,

so we didn’t stop.

So we kept going on,

and at some point
we made another discovery

that we dubbed “correlated novelties.”

It’s very simple.

So I guess we all experience this.

So you listen to “Suzanne”
by Leonard Cohen,

and this experience
triggers your passion for Cohen

so that you start frantically
listening to his whole production.

And then you realize
that Fabrizio De André here

recorded an Italian version of “Suzanne,”

and so on and so forth.

So somehow for some reason,

the very notion of adjacent possible
is already encoding the common belief

that one thing leads to another

in many different systems.

But the reason why we were thrilled

is because actually
we could give, for the first time,

a scientific substance to this intuition

and start making predictions

about the way in which
we experience the new.

So novelties are correlated.

They are not occurring randomly.

And this is good news,

because it implies
that impossible missions

might not be so impossible after all,

if we are guided by our intuition,

somehow leading us
to trigger a positive chain reaction.

But there is a third consequence
of the existence of the adjacent possible

that we named “waves of novelties.”

So just to make this simple, so in music,

without waves of novelties,

we would still be listening
all the time to Mozart or Beethoven,

which is great,

but we don’t do this all the time.

We also listen to the Pet Shop Boys
or Justin Bieber – well, some of us do.

(Laughter)

So we could see very clearly
all of these patterns

in the huge amounts of data
we collected and analyzed.

For instance, we discovered
that popular hits in music

are continuously born, you know that,

and then they disappear,
still leaving room for evergreens.

So somehow waves of novelties ebb and flow

while the tides always hold the classics.

There is this coexistence
between evergreens and new hits.

Not only our theory
predicts these waves of novelties.

This would be trivial.

But it also explains why they are there,

and they are there for a specific reason,

because we as humans
display different strategies

in the space of the possible.

So some of us tend to retrace
already known paths.

So we say they exploit.

Some of us always launch
into new adventures.

We say they explore.

And what we discovered is
all the systems we investigated

are right at the edge
between these two strategies,

something like 80 percent exploiting,
20 percent exploring,

something like
blade runners of innovation.

So it seems that the wise balance,
you could also say a conservative balance,

between past and future,
between exploitation and exploration,

is already in place
and perhaps needed in our system.

But again the good news is
now we have scientific tools

to investigate this equilibrium,

perhaps pushing it further
in the near future.

So as you can imagine,

I was really fascinated by all this.

Our mathematical scheme
is already providing cues and hints

to investigate the space of possibilities

and the way in which
all of us create it and explore it.

But there is more.

This, I guess, is a starting point
of something that has the potential

to become a wonderful journey
for a scientific investigation of the new,

but also I would say
a personal investigation of the new.

And I guess this can have
a lot of consequences

and a huge impact in key activities

like learning, education,
research, business.

So for instance, if you think
about artificial intelligence,

I am sure – I mean,
artificial intelligence,

we need to rely in the near future

more and more on the structure
of the adjacent possible,

to restructure it, to change it,

but also to cope
with the unknowns of the future.

In parallel, we have a lot of tools,

new tools now, to investigate
how creativity works

and what triggers innovation.

And the aim of all this
is to raise a generation of people

able to come up with new ideas
to face the challenges in front of us.

We all know.

I think it’s a long way to go,

but the questions, and the tools,

are now there, adjacent and possible.

Thank you.

(Applause)

我们可能都想

知道伟大的思想是如何实现
他们所取得的成就的,对吧?


他们的

成就越是惊人,我们越是称他们为天才,

也许

是来自异星球的外星人,

绝对不是我们这样的人。

但这是真的吗?

所以让我从一个例子开始。

牛顿苹果的故事大家都知道
吧? 行。

真的吗? 可能不是。

尽管如此,很难
认为那里根本没有苹果。

我的意思是一些垫脚石,
一些

使万有引力
并非不可能设想的特定条件。

这绝对不是不可能的,

至少对牛顿来说是这样。

这是可能的,

并且出于某种原因,它也在那里,

在某个时候可用,
很容易像苹果一样采摘。

这是苹果。

那么爱因斯坦呢?

相对论是否是

其他人无法想象的思想史上的又一次重大飞跃?

或者更确切地说,这是否又
是某种与爱因斯坦相邻且可能的事情

,当然,

他是通过小步
和他非常奇特的科学道路到达那里的?

当然我们不能设想这条路,

但这并不意味着
这条路不存在。

因此,所有这些似乎都非常令人回味,

如果我们真的想了解
伟大思想的起源,

以及更普遍
地了解新思想进入我们生活的方式,我想说的并不具体。

作为一名物理学家,作为一名科学家,

我了解到
提出正确的问题

是解决问题的一半。

但我认为现在我们开始有了
一个很好的概念框架

来构思和
解决正确的问题。

所以让我把
你带到已知的边缘,

或者至少,我所知道的

,让我告诉你,已知的东西

可能是一个强大
而迷人的起点,

可以理解
新奇、创新、

也许是创造力。

所以我们正在讨论“新”

,当然还有它背后的科学。

新事物可以
以许多不同的方式进入我们的生活,

可以是非常个人化的,

比如我认识了一个新人,

我读了一本新书,
或者我听了一首新歌。

或者它可能是全球性的,

我的意思是,我们称之为创新。

它可能是一种新理论,
一种新技术,


如果你是作家,

它也可能是一本新书,或者如果你是作曲家,它可能是一首新歌

在所有这些全球案例中
,新事物适合所有人,

但体验新事物
也可能令人恐惧,

因此新事物也可能使我们感到恐惧。

但是,体验新事物仍然
意味着探索一个非常奇特

的空间,可能

的空间,可能
的空间,可能性的空间。

这是一个非常奇怪的空间,
所以我会试着让你通过这个空间。

所以它可能是一个物理空间。

因此,在这种情况下,例如,

新颖性可能
是第一次攀登马丘比丘,

就像我在 2016 年所做的那样。

它可能是一个概念空间,

因此获取新信息
,理解它,总之,学习。

它可能是一个生物空间。

我的意思是,想想
病毒和细菌

与我们的免疫系统的永无休止的斗争。

现在坏消息来了。

我们
在把握这个空间方面非常非常糟糕。

想想看。 让我们做一个实验。

试着想一想
接下来你可以做的所有事情,比如 24 小时。

这里的关键词是“全部”。

当然,如果可以的话,你可以设想一些选择,
比如喝一杯,写一封信,

在这个无聊的谈话中睡觉

但不是全部。

所以想想外星人入侵,
现在,这里,在米兰,

或者我——我停止思考
了 15 分钟。

所以
很难想象这个空间,

但实际上我们有一个借口。

所以构想这个空间并不是那么容易,

因为我们试图构想
一些全新的事物的发生

,一些以前从未发生过的事物,

所以我们没有线索。

一个典型的解决方案可能是

用过去的眼光看待未来,

因此依赖于
过去事件的所有时间序列,

并希望这
足以预测未来。

但我们知道这是行不通的。

例如,这是天气预报的第一次尝试
,但失败了。

由于

潜在现象的复杂性,它失败了。

所以现在我们知道预测
必须基于建模,

这意味着创建
系统的综合模型,

模拟这个模型
,然后

通过这个模型将系统投影到未来。

现在我们可以借助大量数据在很多情况下做到这一点

以过去的眼光看待未来

也可能对机器产生误导。

想想看。

现在想象一下自己
在澳大利亚内陆中部的情景。

你站在太阳底下。

所以你看到一些奇怪的事情发生了。

汽车突然在

离过马路的袋鼠很远很远的地方停了下来

你仔细观察

,你会发现
这辆车没有司机。

即使袋鼠不在了,它也不会重新启动

因此,由于某些原因,

驾驶汽车的算法
无法

理解这种奇怪的野兽
在街上到处乱跳。

所以它只是停止。

现在,我应该告诉你,
这是一个真实的故事。

几个月前
,沃尔沃

在澳大利亚内陆中部的自动驾驶汽车就发生了这种情况。

(笑声)

这是一个普遍的问题

,我猜这
在不久的将来会越来越多地影响到

人工智能
和机器学习。

这也是一个非常古老的问题,
我会说是 17 世纪,

但我想现在我们有了新的工具
和新的线索来开始解决它。

所以让我退后一步,

五年前。

意大利。 罗马。 冬天。

所以2012年的冬天
在罗马非常特别。

罗马见证
了其历史上最大的降雪之一。

那个冬天
对我和我的同事来说也很特别,

因为我们
对可能的数学方案有了洞察力——

再次,可能的,
可能的数学方案,

以设想新的发生。

我记得那天
因为下雪,

所以因为下雪,
我们被堵住了,被困在我的部门里

,我们不能回家,

所以我们又喝了一杯咖啡,我们放松了

,我们一直在讨论。

但在某个时刻——
也许不是那个日期,确切地说——

在某个时刻,我们

将新问题

与斯图尔特考夫曼几年前提出的一个美丽概念联系起来

,相邻的可能。

所以相邻的可能
包括所有这些东西。

它可以是想法,也可以是分子,
也可以是

离实际存在仅一步之遥的技术产品

,您可以
通过

对现有材料的增量修改和重组来实现它们。

因此,例如,如果我
谈论我的朋友的空间,

我的相邻可能将是
我的朋友的所有朋友的集合,

而不是我的朋友。

我希望这很清楚。

但现在,如果我遇到一个新人,

比如 Briar,

她所有的朋友都会立即进入
我附近的可能,

进一步推动它的界限。

所以如果你真的想
从数学的角度来看——

我确定你想要——

你实际上可以看看这张图片。

所以假设现在这是你的宇宙。

我知道我问了很多。

我的意思是,这是你的宇宙。
现在你是红点。

而绿点
对你来说是相邻的可能,

所以你以前从未接触过的东西。

所以你过着正常的生活。

你挪开。 你在空间中移动。

你喝一杯。
你会见朋友。 你读了一本书。

在某个时候,
你最终到达了绿地,

所以你第一次见到了布赖尔。

会发生什么?

所以发生的事情是有一个新的部分,

一个全新的空间部分,在这一刻

对你来说变得可能

即使

在触及那个点之前没有任何可能预见到这一点。

在这之后,将会
有大量的点

可能
在以后的某些阶段成为可能。

所以你看到可能的空间
是非常奇特的,

因为它不是预定义的。

这不是我们可以预先定义的。

它是

由我们的行为和选择不断塑造和重塑的东西。

所以我们对
我们建立的这些联系非常着迷——

科学家就是这样。

在此基础上,

我们在最初的考夫曼提议 20 年后,为相邻的可能构想了我们的数学公式

在我们的理论中——这是一个关键点——

我的意思是,它关键是基于

这种可能性空间扩展

和重组

的方式与我们探索它的方式之间的复杂相互作用。

在 2012 年的顿悟之后,

我们重新开始工作,真正的工作,

因为我们必须制定这个理论,

并且我们提出了
一定数量的预测

以在现实生活中进行测试。

当然,我们需要一个可测试的框架

来研究创新。

因此,让我带您了解
我们所做的一些预测。

第一个
与创新

的速度有关,即您
在非常不同的系统中观察到新事物的速度。

所以我们的理论预测
,创新率

应该遵循一条普遍的曲线,

就像这条曲线。

这是在非常不同的条件下创新率与时间的关系

不知何故,我们
预测创新率

应该会随着时间的推移而稳步下降。

因此,

随着时间的推移,随着您的进步,预计创新会变得更加困难。

很整洁。 这真有趣。
很美丽。 我们很高兴。

但问题是,这是真的吗?

当然,我们应该检查现实。

所以我们回到现实

,我们收集了大量数据,
TB 级的数据,

跟踪维基百科、Twitter 中的创新

,我们编写免费软件

的方式,甚至我们听音乐的方式。

我不能告诉你,我们
非常惊讶、高兴和激动

地发现,
我们在理论

中所做的相同预测实际上在真实系统中得到了满足,

许多不同的真实系统。

我们非常兴奋。

当然,显然,
我们走在了正确的轨道上,

但当然,我们不能停下来,

所以我们没有停下来。

所以我们继续前进

,在某个时候
我们发现了另一个

我们称之为“相关新奇”的发现。

这很简单。

所以我想我们都经历过这个。

所以你听了
Leonard Cohen 的“Suzanne”

,这段经历
激发了你对 Cohen 的热情,

所以你开始疯狂地
听他的整个作品。

然后你会
发现 Fabrizio De André 在这里

录制了意大利版的“Suzanne”

等等。

所以不知何故

,相邻可能的概念
已经在编码一个共同的信念

,即在许多不同的系统中,一件事会导致另一件事

但我们之所以兴奋,

是因为实际上
我们可以第一次

为这种直觉赋予科学实质,

并开始预测

我们体验新事物的方式。

所以新颖性是相关的。

它们不是随机发生的。

这是个好消息,

因为这
意味着如果我们以直觉为指导,不可能完成的任务最终

可能不会那么不可能,

以某种方式引导
我们引发积极的连锁反应。

但是

存在我们称之为“新奇浪潮”的相邻可能性存在的第三个后果。

所以只是为了简单起见,所以在音乐中,

没有新奇的浪潮,

我们仍然会
一直听莫扎特或贝多芬,

这很棒,

但我们不会一直这样做。

我们还听 Pet Shop Boys
或 Justin Bieber 的声音——嗯,我们中的一些人会这样做。

(笑声)

所以我们可以在我们收集和分析的大量数据中非常清楚地看到
所有这些模式

例如,我们
发现音乐

中的流行歌曲不断诞生,你知道,

然后它们消失了,
仍然为常青树留下空间。

因此,不知何故,一波又一波的新奇潮起潮落,

而潮汐总是承载着经典。

常青树和新的热门歌曲之间存在这种共存。

不仅我们的理论
预测了这些新奇浪潮。

这将是微不足道的。

但这也解释了它们为何存在

,它们存在是有特定原因的,

因为我们人类

在可能的空间中展示了不同的策略。

所以我们中的一些人倾向于回溯
已知的路径。

所以我们说他们利用。

我们中的一些人总是
开始新的冒险。

我们说他们探索。

我们发现
,我们调查的所有系统

都处于
这两种策略之间的边缘,

比如 80% 的开发,
20% 的探索,

比如
创新的刀片式跑步者。

因此,似乎明智的平衡,
也可以说是

过去和未来、
开发和探索之间的保守平衡

,已经到位
,也许在我们的系统中是需要的。

但好消息是,
现在我们有了

研究这种平衡的科学工具,

也许
在不久的将来会进一步推动它。

所以你可以想象,

我对这一切真的很着迷。

我们的数学
方案已经提供了线索和提示

来调查可能性空间

以及
我们所有人创造和探索它的方式。

但还有更多。

我想,这是一个

可能成为
对新事物进行科学研究的美妙旅程的起点,

但我也会说
是对新事物的个人调查。

我想这会对

学习、教育、
研究、商业等关键活动产生很多后果和巨大影响。

因此,例如,如果您
考虑人工智能,

我敢肯定——我的意思是,
人工智能,

我们需要在不久的将来

越来越多地依赖
相邻可能的结构,

对其进行重组,改变它,

但是 也是为了
应对未来的未知数。

与此同时,我们有很多工具,

现在是新工具,来研究
创造力是如何运作的,

以及是什么触发了创新。

而这一切的目的
是培养一代人

能够提出新的想法
来面对我们面前的挑战。

我们都知道。

我认为还有很长的路要走,

但问题和工具

现在就在那里,相邻且可能。

谢谢你。

(掌声)