Small rockets are the next space revolution Peter Beck

So what I’m going to talk about here is,
this is a power station.

So if you’ve ever wondered

what a couple of million
horsepower looked like,

that’s pretty much what it looks like.

And for me, it’s always
been about the rocket.

In fact so much so
that when I was growing up,

the school called in my parents
to have a bit of a discussion,

because they believed that my aspirations

were unrealistic for what I wanted to do.

(Laughter)

And they suggested that I take up a job
at the local aluminium smelter,

because I was very good with my hands.

But for me, aluminium,
or as you Canadians say, “aluminum,”

was not part of my plan at all.

So I started building
rockets when I was at school.

They got bigger and bigger.

I actually hold an unofficial
land speed record

for a rocket bike and roller blades

while wearing a rocket pack.

(Laughter)

But as the rockets got larger and larger,

and more and more complex,

I started to be able to think
I could do something with this.

Now today we hear about very large rockets

taking humans to,
or aspiring to take humans to,

the Moon, and Mars and beyond.

And that’s really important,

but there’s a revolution going
on in the space industry,

and it’s not a revolution of the big,

it’s a revolution of the small.

So here we have an average-to-large-sized
spacecraft in 1990.

We can tell it’s 1990
because of the powder blue smocks

for all the trained
in the clean rooms in 1990.

But that was your average-to-large-sized
spacecraft in 1990.

Here’s a spacecraft
that’s going to launch this year.

This particular spacecraft
has four high-resolution cameras,

a whole lot of senors,
a CoMP communication system.

We’re going to launch thousands
of these into the solar system

to look for extraterrestrial life.

Quite different.

You see that Moore’s law
really applied itself to spacecraft.

However, the rockets
that we’ve been building

have been designed
for carrying these very large,

school-bus-sized spacecraft to orbit.

But this kind of launch vehicle here
is not very practical

for launching something
that will fit on the tip of my finger.

And to give you a sense of scale here,

this rocket is so large
that I inserted a picture of myself

in my underpants, in complete confidence,

knowing that you will
not be able to find me.

That’s how big this rocket actually is.

(Laughter)

Moving on.

(Laughter)

So this is our rocket –
it’s called the Electron.

It’s a small launch vehicle

for lifting these small
payloads into orbit.

And the key here
is not the size of the rocket –

the key here is frequency.

If you actually wanted
to democratize space

and enable access to space,

launch frequency is
the absolute most important thing

out of all of this.

Now in order to really democratize space,
there’s three things you have to do.

And each one of these three things
has kind of the equivalent amount of work.

So the first is, obviously,
you have to build a rocket.

The second is regulatory,
and the third is infrastructure.

So let’s talk a little bit
about infrastructure.

So this is our launch site –

it’s obviously not Cape Canaveral,

but it’s a little launch site –

in fact, it’s the only private
orbiter launch site

in the entire world, down in New Zealand.

And you may think
that’s a bit of an odd place

to build a rocket company
and a launch site.

But the thing is that every time
you launch a rocket,

you have to close down
around about 2,000 kilometers of airspace,

2,000 kilometers
of marine and shipping space,

and ironically, it’s one
of the things in America

that doesn’t scale very well,

because every time
you close down all that airspace,

you disrupt all these travelers
trying to get to their destination.

The airlines really hate rocket companies,

because it costs them
around $70,000 a minute, and so on.

So what you really need,

if you want to truly have
rapid access to space,

is a reliable and frequent
access to space,

is you need, basically,
a small island nation

in the middle of nowhere,
with no neighbors and no air traffic.

And that just happened to be New Zealand.

(Laughter)

So, that’s kind of the infrastructure bit.

Now the next bit of that is regulatory.

So, believe it or not,

New Zealand is not known
for its space prowess,

or at least it wasn’t.

And you can’t just rock on up to a country

with what is essentially
considered an ICBM,

because unfortunately,
if you can put a satellite into orbit,

you can use that rocket
for doing significantly nasty things.

So quickly, you run afoul
of a whole lot of rules and regulations,

and international treaties

of the nonproliferation of weapons
of mass destruction and whatnot.

So it becomes quite complex.

So in order for us
to launch down in New Zealand,

we had to get the United States government
and the New Zealand government

to agree to sign a bilateral treaty.

And then once that bilateral
treaty was signed

to safeguard the technology,

the New Zealand government
had a whole lot of obligations.

And they had to create
a lot of rules and regulations.

In fact, they had to pass laws
through a select committee

and through Parliament,
ultimately, and to complete laws.

Once you have laws,
you need somebody who administers them.

So they had to create a space agency.

And once they did,
the Aussies felt left out,

so they had to create a space agency.

And on and on it goes.

So you see, there’s a massive
portion of this, in fact,

two thirds of it, that does not
even involve the rocket.

(Laughter)

Now, let’s talk about the rocket.

You know, what I didn’t say

is that we’re actually licensed to launch
every 72 hours for the next 30 years.

So we have more launch
availability as a private company

than America does as an entire country.

And if you’ve got a launch every 72 hours,

then that means you have to build
a rocket every 72 hours.

And unfortunately, there’s no such thing
as just a one-stop rocket shop.

You can’t go and buy
bits to build a rocket.

Every rocket is absolutely bespoke,

every component is absolutely bespoke.

And you’re in a constant
battle with physics every day.

Every single day,
I wake up and I battle physics.

And I’ll give you an example of this.

So on the side of our rocket,
there’s a silver stripe.

The reason is because there’s avionic
components behind there.

We needed to lower
the emissivity of the skin

so we didn’t cook
the components from the sunlight.

So we paint a silver stripe.

Unfortunately, as you’re
sailing through the Earth’s atmosphere,

you generate a lot of static electricity.

And if you don’t have conductive paint,

you’ll basically send lightning
bolts down to the Earth.

So even the silver paint
has to be triboelectrificated

and certified and applied and everything,

and the stickers,
they’re a whole nother story.

But even the simplest thing
is always, always a real struggle.

Now, to the heart of any
launch vehicle is the engine.

This is our Rutherford rocket engine.

And usually, you measure rocket engines

in terms of time to manufacture,
in terms of sort of months

or even sometimes years,
on really big engines.

But if you’re launching every 72 hours –

there’s 10 engines per rocket –

then you need to produce
an engine very quickly.

We needed to come up
with a whole new process

and a whole new cycle
for the rocket engine.

We came up with a new cycle
called the electric turbo pump,

but we also managed to be able
to 3D-print these rocket engines.

So each one of these engines
is 3D-printed out of Inconel superalloy,

and right now, we can print round
about one engine every 24 hours.

Now, the electric turbo pump cycle

is a totally different
way to pump propellant

into the rocket engine.

So we carry about one megawatt
where the battery is on board.

And we have little electric turbo pumps,
about the size of a Coke can,

not much bigger than a Coke can.

They spin at 42,000 RPM,

and each one of those
Coke-can-sized turbo pumps

produces about the same
amount of horsepower

as your average family car,

and we have 20 of them on the rocket.

So you can see even the simplest thing,
like pumping propellants,

always pretty much drives you insane.

This is Electron, it works.

(Laughter)

(Applause)

Not only does it work once,
it seems to work quite frequently,

which is handy when you’ve got
a lot of customers to put on orbit.

So far, we’ve put 25 satellites in orbit.

And the really cool thing

is we’re able to do it
very, very accurately.

In fact, we insert the satellites
to within an accuracy of 1.4 kilometers.

And I guess if you’re riding in a cab,

1.4 kilometers is not very accurate.

But in, kind of, space terms,

that equates to around
about 180 milliseconds.

We travel 1.4 kilometers
in about 180 milliseconds.

So, it’s actually quite hard to do.

(Laughter)

Now, what I want to talk
about here is space junk.

We’ve talked a lot during
this talk about, you know,

how we want to launch really
frequently, every 72 hours,

and all the rest of it.

However, I don’t want
to go down in history

as the guy that put the most
amount of space junk in orbit.

This is kind of the industry’s
dirty little secret here,

what most people don’t realize
is that the majority of space junk by mass

is not actually satellites,
it’s dead rockets.

Because as you ascend to orbit,

you have to shed
bits of the rocket to get there,

with the battle of physics.

So I’m going to give a little
Orbital Mechanics 101 here,

and talk about how we go to orbit,

and how we do it really,
really differently from everybody else.

So the second stage cruises along

and then we separate off
a thing at the top called the kick stage,

but we leave the second stage
in this highly elliptical orbit.

And at the perigee
of the orbit, or the lowest point,

it dips into the Earth’s atmosphere
and basically burns back up.

So now we’re left
with this little kick stage,

that white thing
on the corner of the screen.

It’s got its own propulsion system,

and we use it to raise and trim the orbit

and then deploy the spacecraft.

And then because it’s got its own engine,
we put it into a retro orbit,

put it back into a highly
elliptical orbit,

reenter it into the atmosphere
and burn it back up,

and leave absolutely nothing behind.

Now everybody else in the industry
is just downright filthy,

they just leave their crap
everywhere out there.

(Laughter)

(Applause)

So I want to tell you
a little bit of a story,

and this is going to date me,

but I went to a school at the very bottom
of the South Island in New Zealand,

tiny little school,

and we had a computer
not dissimilar to this one.

And attached to that computer
was a little black box called a modem,

and every Friday, the class would gather
around the computer

and we would send an email
to another school in America

that was lucky enough
to have the same kind of setup,

and we would receive an email back.

And we thought that was just incredible,
absolutely incredible.

Now I often wonder

what would happen
if I traveled back in time

and I sat down with myself

and I explained all of the things
that were going to occur

because of that little black box
connected to the computer.

You would largely think
that it would be complete fantasy.

But the reality is that is where we are
right now with space.

We’re right on the verge
of democratizing space,

and we have essentially sent
our first email to space.

Now I’ll give you some examples.

So last year, we flew a small satellite

for a bunch of high school
students who had built it.

And the high school students were studying
the atmosphere of Venus.

Those are high school students
launching their own satellite.

Another great example,

there’s a number of really big
programs right now

to place large constellations,
of small satellites in orbit

to deliver internet
to every square millimeter on the planet.

And for pretty much
everybody in this room,

that’s just handy,

because we can stream Netflix
anywhere we want.

But if you think about the developing
countries of the world,

you’ve just disseminated
the entire knowledge of the world

to every single person in the world.

And that’s going to have
a pretty major effect.

Thanks very much.

(Applause)

所以我在这里要说的是,
这是一个发电站。

因此,如果您曾经想

知道几百万
马力的样子,

那几乎就是它的样子。

对我来说,这
一直是关于火箭的。

事实上,
以至于在我成长的过程中

,学校召集了我的
父母进行了一些讨论,

因为他们认为我的愿望

对于我想做的事情是不切实际的。

(笑声

) 他们建议我
在当地的铝冶炼厂工作,

因为我的手非常好。

但对我来说,铝,
或者正如你们加拿大人所说的,“铝”

根本不是我计划的一部分。

所以
我在学校时就开始制造火箭。

他们变得越来越大。

实际上,我在穿着火箭包时持有火箭自行车和旱冰鞋的非官方
陆地速度记录

(笑声)

但是随着火箭变得越来越大,

越来越复杂,

我开始能够认为
我可以用这个做点什么。

现在,今天我们听说超大型火箭

将人类带到
或渴望将人类

带到月球、火星和更远的地方。

这真的很重要,

但是太空工业正在发生一场革命

,这不是一场大革命,

而是一场小革命。

所以这里我们有一艘 1990 年的中大型
航天器。

我们可以说是 1990 年,因为 1990 年洁净室

中所有受过训练的人都穿着粉蓝色的工作服

但那是你的中大型
航天器 1990 年。

这是一艘
将于今年发射的宇宙飞船。

这个特殊的航天器
有四个高分辨率相机、

一大堆传感器、
一个 CoMP 通信系统。

我们将向太阳系发射数以千计
的这些

来寻找外星生命。

很不一样。

您会看到摩尔定律
确实适用于航天器。

然而
,我们一直在制造的火箭是

为将这些非常大的

校车大小的航天器送入轨道而设计的。

但是这里的这种运载火箭

对于发射
可以放在我指尖上的东西并不是很实用。

为了给你一个规模感,

这枚火箭太大了
,我在我的内裤里插了一张自己的照片

,完全自信,

知道你
找不到我。

这就是这枚火箭实际上有多大。

(笑声)

继续前进。

(笑声)

这就是我们的火箭——
它被称为电子。

它是一种小型运载火箭,

用于将这些小型
有效载荷送入轨道。

这里的关键
不是火箭的大小——

这里的关键是频率。

如果你真的想
使太空民主化

并允许进入太空,那么

发射频率绝对

是所有这一切中最重要的事情。

现在,为了真正使空间民主化,
你必须做三件事。

这三件事中的每一件事
都有相当数量的工作。

所以首先,很明显,
你必须造一个火箭。

二是监管
,三是基础设施。

所以让我们
谈谈基础设施。

所以这是我们的发射场——

它显然不是卡纳维拉尔角,

而是一个小型发射场

——事实上,它是全世界唯一的私人
轨道器发射场

,位于新西兰。

你可能会认为在
这个

地方建造火箭公司
和发射场有点奇怪。

但问题是,
每次发射火箭,

你必须关闭
大约 2000 公里的空域,

2000 公里
的海洋和航运空间

,具有讽刺意味的是,这是
在美国规模不大的事情之一

因为
每次关闭所有空域时,

都会扰乱所有
试图到达目的地的旅行者。

航空公司真的很讨厌火箭公司,

因为他们
每分钟要花费大约 70,000 美元,等等。

因此,

如果您想真正
快速进入太空,您真正需要的

是可靠且频繁
地进入太空

,基本上,您是否需要
一个位于偏远地区的小岛国

,没有邻居,也没有空中交通。

那恰好是新西兰。

(笑声)

所以,这就是基础设施位。

现在下一点是监管。

所以,不管你信不信,

新西兰并不
以其太空实力而闻名,

或者至少它不是。

你不能仅仅依靠

一个本质上
被认为是洲际弹道导弹的国家,

因为不幸的是,
如果你能把一颗卫星送入轨道,

你就可以用那颗
火箭做一些非常讨厌的事情。

这么快,你就
违反了一大堆规则和条例,

以及

不扩散
大规模杀伤性武器之类的国际条约。

所以它变得相当复杂。

所以为了让我们
在新西兰发射,

我们必须让美国政府
和新西兰政府

同意签署双边条约。

然后,一旦
签署

了保护这项技术的双边条约

,新西兰政府
就有很多义务。

他们必须
制定很多规章制度。

事实上,他们最终必须
通过一个特别委员会

和议会通过法律
,并最终完成法律。

一旦你有了法律,
你就需要有人来管理它们。

所以他们不得不创建一个太空机构。

一旦他们这样做了
,澳大利亚人就会感到被冷落了,

所以他们不得不创建一个航天局。

就这样继续下去。

所以你看,这其中有很大
一部分,实际上是

三分之二,
甚至不涉及火箭。

(笑声)

现在,让我们谈谈火箭。

你知道,我没有说的

是,我们实际上获得
了在未来 30 年内每 72 小时发射一次的许可。

因此,
作为一家私营公司,我们

比美国作为整个国家拥有更多的发射可用性。

如果你每 72 小时发射一次,

那意味着你必须
每 72 小时制造一次火箭。

不幸的是,没有
一站式的火箭店。

你不能去买
钻头来建造火箭。

每一枚火箭都是绝对定制的,

每一个部件都是绝对定制的。

而且您每天都在与物理学进行持续的
战斗。

每一天,
我醒来,我都在与物理作斗争。

我会给你一个例子。

所以在我们火箭的侧面,
有一条银色条纹。

原因是后面有航空电子
元件。

我们需要降低
皮肤的发射率,

所以我们不会
在阳光下烹饪这些组件。

所以我们画了一条银色条纹。

不幸的是,当你
在地球大气层中航行时,

会产生大量的静电。

如果你没有导电涂料,

你基本上
会向地球发射闪电。

所以即使是银漆
也必须经过摩擦电气化

、认证和应用,所有的东西,

还有贴纸,
它们就是另一回事了。

但即使是最简单的事情
也总是,总是一场真正的斗争。

现在,任何运载火箭的核心
都是发动机。

这是我们的卢瑟福火箭发动机。

通常,您会

根据制造时间来衡量火箭发动机,
在非常大的发动机上以几个月

甚至有时几年来衡量

但如果你每 72 小时发射一次——

每枚火箭有 10 个引擎——

那么你需要
非常快速地生产出一个引擎。

我们需要为火箭发动机
提出一个全新的流程

和全新的循环

我们想出了一个
称为电动涡轮泵的新循环,

但我们也设法能够
对这些火箭发动机进行 3D 打印。

因此,这些引擎中的每一个
都是由 Inconel 高温合金 3D 打印出来的

,现在,我们可以
每 24 小时打印大约一个引擎。

现在,电动涡轮泵循环

是一种
将推进剂泵

入火箭发动机的完全不同的方式。

所以我们携带大约一
兆瓦的电池在船上。

我们有小型电动涡轮泵,
大约有可乐罐

那么大,比可乐罐大不了多少。

它们以 42,000 RPM 的速度旋转

,每一个
可乐罐大小的涡轮泵

产生的马力

与普通家用汽车差不多

,我们在火箭上有 20 个。

所以你可以看到即使是最简单的事情,
比如泵送推进剂,也

总是让你发疯。

这是电子,它有效。

(笑声)

(掌声)

不光是一次,
而且好像很频繁,

当你
有很多客户要送入轨道时,这很方便。

到目前为止,我们已经将 25 颗卫星送入轨道。

真正酷的

是我们能够
非常非常准确地做到这一点。

事实上,我们插入卫星
的精度在 1.4 公里以内。

而且我猜如果您乘坐出租车,

1.4 公里并不是很准确。

但在某种空间术语中,

这相当于
大约 180 毫秒。

我们
在大约 180 毫秒内行驶 1.4 公里。

所以,实际上很难做到。

(笑声)

现在,我想在
这里谈论的是太空垃圾。


这次谈话中,我们已经谈了很多,你知道,

我们希望如何真正频繁地发布
,每 72 小时一次,

以及其他所有内容。

但是,我不想

作为将
最多太空垃圾送入轨道的人载入史册。

这是这个行业的一个
肮脏的小秘密

,大多数人没有意识到的
是,大部分的太空垃圾

实际上并不是卫星,
而是死火箭。

因为当你进入轨道时,

你必须摆脱
火箭的碎片才能到达那里,

进行物理大战。

所以我要在
这里讲一点轨道力学 101

,谈谈我们如何进入轨道,

以及我们如何做到这一点,
与其他人完全不同。

所以第二阶段继续前进

,然后我们
在顶部分离出一个叫做踢阶段的东西,

但我们将第二阶段留
在这个高度椭圆的轨道上。

在轨道的近地点
或最低点,

它会浸入地球大气层
并基本上重新燃烧起来。

所以现在我们只剩
下这个小踢球台了,

屏幕一角的那个白色的东西。

它有自己的推进系统

,我们用它来提升和调整轨道

,然后部署航天器。

然后因为它有自己的引擎,
我们把它送入一个复古轨道,

把它放回一个高度
椭圆的轨道,

重新进入大气层
并重新燃烧,

绝对不会留下任何东西。

现在这个行业的其他人
都是彻头彻尾的肮脏,

他们只是到处乱扔垃圾

(笑声)

(掌声)

所以我想给你们讲
一个故事

,这是要和我约会,

但我去了新西兰南岛最底部的一所学校,

很小的学校,

而且 我们有一台
与这台电脑没有什么不同的电脑。

那台电脑上连着
一个叫做调制解调器的小黑匣子

,每个星期五,全班同学都会
围在电脑前

,我们会向
美国的另一所学校发送一封电子邮件,这所学校

有幸拥有相同的设置

,我们 会收到一封回信。

我们认为这太不可思议了,
绝对不可思议。

现在我经常想

知道如果我回到过去会发生什么
,我

和自己坐下来

,我解释了

由于连接到计算机的那个小黑匣子将会发生的所有事情

您在很大程度上会
认为这将是完全的幻想。

但现实是,这就是我们现在所处
的空间。

我们正处于
太空民主化的边缘

,我们基本上已经
向太空发送了第一封电子邮件。

现在我给你举几个例子。

所以去年,我们


一群建造它的高中生飞行了一颗小型卫星。

高中生们正在研究
金星的大气。

那些是
发射自己的卫星的高中生。

另一个很好的例子,

现在有许多非常大的
计划

来放置大型星座
,小型卫星在轨道

上为地球上的每一平方毫米提供互联网。

对于
这个房间里的几乎每个人来说,

这都很方便,

因为我们可以
在任何我们想要的地方流式传输 Netflix。

但如果你想想
世界上的发展中国家,

你只是
将世界的全部知识传播给

了世界上的每一个人。

这将
产生相当大的影响。

非常感谢。

(掌声)