The fundamentals of spacetime Part 1 Andrew Pontzen and Tom Whyntie

Space: it’s where things happen.

Time: it’s when things happen.

We can measure where things are

and when things take place,

but in modern physics,

we realize when and where

are actually part of the same question.

Because when it comes to understanding the universe,

we need to replace three-dimensional space plus time

with a single concept:

four-dimensional space-time.

We’ll explore and explain space-time

in this series of animations.

Animations?

Yeah.

Well, we’re not very animated are we?

Sure we are! Look, I can go from here to here.

Whoa! How’d you get from here to there?

How fast did you go?

Did you run? Walk?

Did you even go in a straight line?

Ah! To answer that, you’ll need to make our cartoon physics

look more like physics physics.

You’ll need more panels.

More panels, please!

Okay, in each panel, Andrew’s in a slightly different place.

So I can see each one records

where Andrew is at a different time.

That’s great. But it would be easier to see

what’s going on if we could cut out

all the hundreds of panels and stack them up

like a flip book.

Right, now let’s flip through the book

so that we can see one panel after another

getting through 24 in every second.

See! I told you it was an animation.

Now you can see me walking along.

Drawing all those panels and putting them into a flip book

is just one way of recording the way I’m moving.

It’s how animation, or even movies, work.

As it turns out, at my walking speed,

it takes two seconds to get past each fence post,

and they’re spaced four meters apart.

So we can calculate my velocity –

how fast I’m moving through space - -

is two meters per second.

But I could’ve worked that out from the panels

without flipping through them.

From the edge of the flip book,

you can see all of the copies of the fence posts

and all of the copies of Andrew

and he’s in a slightly different place in each one.

Now we can predict everything that will happen to Andrew

when we flip through 24 pages every second,

including his speed of motion,

just by looking.

No need to flip through at all.

The edge of this flip book

is known as a space-time diagram

of Andrew’s journey through, you guessed it,

space and time.

We call the line that represents Andrew’s journey

his world line.

If i jog instead of walking,

I might be able to get past a fence post every second.

He’s not very athletic.

Anyway, when we look at this new flip book from the edge,

we can do the same analysis as before.

The world line for Andrew jogging

is more tilted over

than the world line for Andrew walking.

We can tell he’s going twice as fast as before

without flipping the panels.

But here’s the clever bit.

In physics, it’s always good to view things from other perspectives.

After all, the laws of physics

should be the same for everyone

or no one will obey them.

So let’s rethink our cartoon

and have the camera follow Andrew jogging along

as the fence posts approach and pass behind him.

Still viewing it as a flip book of panels,

we don’t need to redraw anything.

We simply move all of the cutout frames slightly

until Andrew’s tilted world line

becomes completely vertical.

To see why, let’s flip it.

Yes, now I’m stationery, just jogging on the spot,

in the center of the panel.

On the edge of the flip book,

my world line was going straight upwards.

The fence posts are coming past me.

It’s now their world lines that are tilted.

This rearrangement of the panels is known as a

Galilean transformation,

and it lets us analyze physics from someeone else’s perspective.

In this case, mine.

After all, it’s always good to see things from other points of view,

especially when the viewers are moving

at different speeds.

So long as the speeds aren’t too high.

If you’re a cosmic ray moving at the speed of light,

our flip book of your point of view falls apart.

To stop that from happening,

we’ll have to glue panels together.

Instead of a stack of separate panels,

we’ll need a solid block of space-time,

which we’ll come to in the next animation.

空间:这是事情发生的地方。

时间:就是事情发生的时候。

我们可以测量事物在哪里

以及何时发生,

但在现代物理学中,

我们意识到何时何

地实际上是同一个问题的一部分。

因为在理解宇宙的时候,

我们需要用一个单一的概念来代替三维空间加时间

四维时空。

我们将

在这一系列动画中探索和解释时空。

动画?

是的。

好吧,我们不是很活跃,是吗?

我们当然是! 看,我可以从这里到这里。

哇! 你是怎么从这里到那里的?

你走多快?

你跑了吗? 走?

你是不是直接走直线了?

啊! 要回答这个问题,您需要让我们的卡通物理

看起来更像物理物理。

你需要更多的面板。

更多面板,请!

好的,在每个面板中,安德鲁的位置略有不同。

所以我可以看到每个

记录安德鲁在不同时间的位置。

那太棒了。 但是

,如果我们可以剪下

所有数百个面板并将它们

像翻书一样堆叠起来,就会更容易看到发生了什么。

对,现在让我们翻阅这本书,

以便我们可以看到一个面板一个接一个

地通过 24 每秒。

看! 我告诉过你这是动画。

现在你可以看到我在走。

绘制所有这些面板并将它们放入翻书

只是记录我移动方式的一种方式。

这就是动画甚至电影的工作方式。

事实证明,以我的步行速度,

通过每个栅栏柱需要两秒钟

,它们相距四米。

所以我们可以计算出我的速度——

我在太空中移动的速度——

是每秒两米。

但是我可以从面板中解决这个问题,而

无需翻阅它们。

从翻页书的边缘,

您可以看到栅栏柱

的所有副本和安德鲁的所有副本

,他在每个副本中的位置略有不同。

现在我们可以预测

当我们每秒翻阅 24 页时 Andrew 会发生的一切,

包括他的运动速度,

只要看一眼。

完全不需要翻页。

这本翻书的边缘

被称为

安德鲁穿越的时空图,你猜对了,

空间和时间。

我们称代表安德鲁旅程

的线为他的世界线。

如果我慢跑而不是走路,

我可能每秒都能越过栅栏。

他不是很运动。

无论如何,当我们从边缘看这本新的翻书时,

我们可以做和以前一样的分析。

安德鲁慢跑

的世界线比安德鲁步行的世界线更倾斜。

我们可以知道他的速度是以前的两倍,

而无需翻转面板。

但这是聪明的一点。

在物理学中,从其他角度看待事物总是好的。

毕竟,物理定律

应该对每个人都一样,

否则没有人会遵守它们。

所以让我们重新考虑一下我们的卡通片

,让摄像机跟随安德鲁慢跑,

因为栅栏柱接近并从他身后经过。

仍然将其视为面板翻书,

我们不需要重新绘制任何内容。

我们只需稍微移动所有剪切框,

直到 Andrew 倾斜的世界线

完全垂直。

要知道为什么,让我们翻转它。

是的,现在我是文具,只是原地慢跑,

在面板的中心。

在翻书的边缘,

我的世界线笔直向上。

栅栏柱从我身边经过。

现在是他们的世界线倾斜了。

面板的这种重新排列被称为

伽利略变换

,它让我们可以从其他人的角度分析物理学。

在这种情况下,我的。

毕竟,从其他角度看事物总是好的,

尤其是当观众

以不同的速度移动时。

只要速度不要太高。

如果你是一条以光速运动的宇宙射线,

我们的翻书你的观点就会分崩离析。

为了阻止这种情况发生,

我们必须将面板粘合在一起。

我们需要一个坚固的时空块,

而不是一堆单独的面板,我们将在下一个动画中介绍它。