The fundamentals of spacetime Part 3 Andrew Pontzen and Tom Whyntie

Gravity. It controls the universe.

Everything attracts everything else.

Ouch!

Including you.

Ow!

In this final lesson,

we’ll explore what gravity means for space-time,

or rather what space-time means for gravity.

Until now, we’ve been dealing with things moving

at constant speeds,

with straight world lines in space-time.

But once you add gravity,

if you measure a speed at one moment,

then again a bit later,

the speed may have changed.

In other words, as I discovered,

gravity causes acceleration,

so we need the world line to look different

from one moment to the next.

As we saw in the last lesson,

the correct way to tilt an object’s world line

is using a Lorentz transformation:

Einstein’s stretch and squash trick.

So, to map out what gravity is doing to Tom’s motion,

we need to create a whole load of little patches of space-time,

each transformed by different amounts.

So that my world line is at a different angle in each one.

And then, we’re ready to stitch everything together.

We assemble a cozy quilt of space-time

where world lines look curved.

Where the world lines join, the objects collide.

By making these connections between the patches,

a curvature gets built into space-time itself.

But Einstein’s true genius

was to describe precisely how each patch

is stretched and squashed

according to nearby mass and energy.

The mere presence of stuff curves the space-time,

and curving space-time moves the stuff around.

This is gravity, according to Einstein.

Previously, Isaac Newton had explained gravity

using the ideas of force and acceleration,

without any wibbily wobbly space-time,

and that did pretty well.

But Einstein’s theory does just slightly better

at predicting, for example,

the orbit of Mercury around the Sun,

or the way that light rays are deflected by massive objects.

More importantly, Einstein’s theory predicts things

that simply don’t exist in older theories

where space, time and gravity were separate.

The stitching can leave wrinkles in the space-time material.

These are called gravitational waves,

which should be detectable as tiny, repetitive,

subtle squashes and stretches in space.

So we’re building experiments to check if they are there.

In the meantime, indirect evidence,

most recently in the polarization patterns of light

left over from the Big Bang,

strongly suggest that they are.

But despite Einstein’s successes,

when too much stuff gets concentrated

in too small a space,

like in a black hole,

the curvature of space-time becomes so large,

that his equations collapse.

We need a new picture of space-time

that incorporates quantum mechanics

to unlock the secret at the heart of black holes.

Which means there’s plenty more to be discovered

about space, time, and space-time in the future.

重力。 它控制着宇宙。

一切都吸引着其他一切。

哎哟!

包括你。

哦!

在这最后一课中,

我们将探讨引力对时空的意义,

或者更确切地说,时空对引力的意义。

到目前为止,我们一直在处理以恒定速度移动的事物

,时空中有直线的世界线。

但是一旦你加上重力,

如果你在某个时刻测量速度,

然后再过一段时间

,速度可能已经改变了。

换句话说,正如我所发现的,

重力会导致加速度,

所以我们需要世界线

从一个时刻到另一个时刻看起来都不一样。

正如我们在上一课中看到的,

倾斜物体世界线的正确方法

是使用洛伦兹变换:

爱因斯坦的拉伸和挤压技巧。

因此,要绘制出重力对汤姆运动的影响,

我们需要创建一大堆时空小块,

每个块都转换了不同的量。

这样我的世界线就在每一个不同的角度。

然后,我们准备好将所有内容拼接在一起。

我们组装了一个舒适的时空被子

,世界线看起来是弯曲的。

世界线连接的地方,物体发生碰撞。

通过在斑块之间建立这些连接

,曲率被构建到时空本身中。

但爱因斯坦真正的天才

是准确地描述了每个补丁如何

根据附近的质量和能量被拉伸和挤压。

物质的存在会使时空

弯曲,而弯曲的时空会使物质四处移动。

根据爱因斯坦的说法,这就是引力。

以前,艾萨克牛顿

用力和加速度的概念解释了引力,

没有任何摇摆不定的时空,

而且做得很好。

但爱因斯坦的理论

在预测例如

水星绕太阳的轨道

或光线被大质量物体偏转的方式方面做得稍好一些。

更重要的是,爱因斯坦的理论预测了

在空间、时间和重力是分开的旧理论中根本不存在的东西。

缝合会在时空材料中留下皱纹。

这些被称为引力波

,应该可以在空间中以微小的、重复的、

微妙的挤压和伸展来检测。

所以我们正在建立实验来检查它们是否存在。

与此同时,间接证据,

最近在大爆炸留下的光的偏振模式中

强烈表明它们是。

但是,尽管爱因斯坦取得了成功,

但当太多的东西集中

在太小的空间中时,

比如在黑洞中,

时空的曲率变得如此之大,

以至于他的方程崩溃了。

我们需要一张包含量子力学的新时空图

来解开黑洞核心的秘密。

这意味着未来还有更多

关于空间、时间和时空的发现。