The search for dark matter and what weve found so far Risa Wechsler

Do you ever think about what would happen

if the world were a little bit different?

How your life would be different

if you were born 5,000 years from now

instead of today?

How history would be different

if the continents
were at different latitudes

or how life in the Solar system
would have developed

if the Sun were 10 percent larger.

Well, playing with these
kinds of possibilities

is what I get to do for a living

but with the entire universe.

I make model universes in a computer.

Digital universes that have
different starting points

and are made of different amounts
of different kinds of material.

And then I compare
these universes to our own

to see what it is made of
and how it evolved.

This process of testing models
with measurements of the sky

has taught us a huge amount
about our universe so far.

One of the strangest
things we have learned

is that most of the material
in the universe

is made of something
entirely different than you and me.

But without it,

the universe as we know it wouldn’t exist.

Everything we can see with telescopes

makes up just about 15 percent
of the total mass in the universe.

Everything else, 85 percent of it,

doesn’t emit or absorb light.

We can’t see it with our eyes,

we can’t detect it with radio waves

or microwaves or any other kind of light.

But we know it is there

because of its influence
on what we can see.

It’s a little bit like,

if you wanted to map
the surface of our planet

and everything on it

using this picture of the Earth
from space at night.

You get some clues
from where the light is,

but there’s a lot that you can’t see,

everything from people
to mountain ranges.

And you have to infer what is there
from these limited clues.

We call this unseen stuff “dark matter.”

Now, a lot of people
have heard of dark matter,

but even if you have heard of it,

it probably seems abstract,

far away, probably even irrelevant.

Well, the interesting thing is,

dark matter is all around us

and probably right here.

In fact, dark matter particles

are probably going through
your body right now

as you sit in this room.

Because we are on Earth

and Earth is spinning around the Sun,

and the Sun is hurtling through our galaxy

at about half a million miles per hour.

But dark matter doesn’t bump into us,

it just goes right through us.

So how do we figure out more about this?

What is it,

and what does it have to do
with our existence?

Well, in order to figure out
how we came to be,

we first need to understand
how our galaxy came to be.

This is a picture of our galaxy,
the Milky Way, today.

What did it look like
10 billion years in the past

or what would it look like
10 billion years in the future?

What about the stories

of the hundreds of millions
of other galaxies

that we’ve already mapped out
with large surveys of the sky?

How would their histories be different

if the universe was made of something else

or if there was more or less matter in it?

So the interesting thing
about these model universes

is that they allow us
to test these possibilities.

Let’s go back to the first
moment of the universe –

just a fraction of a second
after the big bang.

In this first moment,

there was no matter at all.

The universe was expanding very fast.

And quantum mechanics tells us

that matter is being created and destroyed

all the time, in every moment.

At this time, the universe
was expanding so fast

that the matter that got created
couldn’t get destroyed.

And thus we think that all of the matter
was created during this time.

Both the dark matter

and the regular matter
that makes up you and me.

Now, let’s go a little bit further

to a time after the matter was created,

after protons and neutrons formed,

after hydrogen formed,

about 400,000 years after the big bang.

The universe was hot and dense
and really smooth

but not perfectly smooth.

This image, taken with a space telescope
called the Planck satellite,

shows us the temperature of the universe

in all directions.

And what we see

is that there were places
that were a little bit hotter

and denser than others.

The spots in this image

represent places where there was
more or less mass in the early universe.

Those spots got big because of gravity.

The universe was expanding
and getting less dense overall

over the last 13.8 billion years.

But gravity worked hard in those spots

where there was a little bit more mass

and pulled more and more mass
into those regions.

Now, all of this
is a little hard to imagine,

so let me just show you
what I am talking about.

Those computer models I mentioned
allow us to test these ideas,

so let’s take a look at one of them.

This movie, made by my research group,

shows us what happened to the universe
after its earliest moments.

You see the universe
started out pretty smooth,

but there were some regions

where there was
a little bit more material.

Gravity turned on
and brought more and more mass

into those spots that started out
with a little bit extra.

Over time,

you get enough stuff in one place

that the hydrogen gas,

which was initially well mixed
with the dark matter,

starts to separate from it,

cool down, form stars,

and you get a small galaxy.

Over time, over billions
and billions of years,

those small galaxies crash into each other

and merge and grow
to become larger galaxies,

like our own galaxy, the Milky Way.

Now, what happens
if you don’t have dark matter?

If you don’t have dark matter,

those spots never get clumpy enough.

It turns out, you need at least
a million times the mass of the Sun

in one dense region,

before you can start forming stars.

And without dark matter,

you never get enough stuff in one place.

So here, we’re looking
at two universes, side by side.

In one of them you can see

that things get clumpy quickly.

In that universe,

it’s really easy to form galaxies.

In the other universe,

the things that start out
like small clumps,

they just stay really small.

Not very much happens.

In that universe,
you wouldn’t get our galaxy.

Or any other galaxy.

You wouldn’t get the Milky Way,

you wouldn’t get the Sun,

you wouldn’t get us.

We just couldn’t exist in that universe.

OK, so this crazy stuff, dark matter,

it’s most of the mass in the universe,

it’s going through us right now,
we wouldn’t be here without it.

What is it?

Well, we have no idea.

(Laughter)

But we have a lot of educated guesses,

and a lot of ideas
for how to find out more.

So, most physicists think
that dark matter is a particle,

similar in many ways to the subatomic
particles that we know of,

like protons and neutrons and electrons.

Whatever it is,

it behaves very similarly
with respect to gravity.

But it doesn’t emit or absorb light,

and it goes right through normal matter,

as if it wasn’t even there.

We’d like to know what particle it is.

For example, how heavy is it?

Or, does anything at all happen
if it interacts with normal matter?

Physicists have lots of great ideas
for what it could be,

they’re very creative.

But it’s really hard,

because those ideas span a huge range.

It could be as small
as the smallest subatomic particles,

or it could be as large
as the mass of 100 Suns.

So, how do we figure out what it is?

Well, physicists and astronomers

have a lot of ways
to look for dark matter.

One of the things we’re doing
is building sensitive detectors

in deep underground mines,

waiting for the possibility

that a dark matter particle,
which goes through us and the Earth,

would hit a denser material

and leave behind
some trace of its passage.

We’re looking for dark matter in the sky,

for the possibility
that dark matter particles

would crash into each other

and create high-energy light
that we could see

with special gamma-ray telescopes.

We’re even trying to make
dark matter here on Earth,

by smashing particles together
and looking for what happens,

using the Large Hadron
Collider in Switzerland.

Now, so far,

all of these experiments
have taught us a lot

about what dark matter isn’t

(Laughter)

but not yet what it is.

There were really good ideas
that dark matter could have been,

that these experiments would have seen.

And they didn’t see them yet,

so we have to keep looking
and thinking harder.

Now, another way to get a clue
to what dark matter is

is to study galaxies.

We already talked about

how our galaxy and many other galaxies
wouldn’t even be here

without dark matter.

Those models also make predictions

for many other things about galaxies:

How they’re distributed in the universe,

how they move,

how they evolve over time.

And we can test those predictions
with observations of the sky.

So let me just give you two examples

of these kinds of measurements
we can make with galaxies.

The first is that we can make
maps of the universe with galaxies.

I am part of a survey
called the Dark Energy Survey,

which has made the largest map
of the universe so far.

We measured the positions and shapes
of 100 million galaxies

over one-eighth of the sky.

And this map is showing us all the matter
in this region of the sky,

which is inferred by the light
distorted from these 100 million galaxies.

The light distorted from all of the matter

that was between those galaxies and us.

The gravity of the matter is strong enough
to bend the path of light.

And it gives us this image.

So these kinds of maps

can tell us about how much
dark matter there is,

they also tell us where it is

and how it changes over time.

So we’re trying to learn
about what the universe is made of

on the very largest scales.

It turns out that the tiniest
galaxies in the universe

provide some of the best clues.

So why is that?

Here are two example simulated universes

with two different kinds of dark matter.

Both of these pictures
are showing you a region

around a galaxy like the Milky Way.

And you can see that there’s a lot
of other material around it,

little small clumps.

Now, in the image on the right,

dark matter particles are moving slower
than they are in the one on the left.

If those dark matter particles
are moving really fast,

then the gravity in small clumps
is not strong enough

to slow those fast particles down.

And they keep going.

They never collapse
into these small clumps.

So you end up with fewer of them
than in the universe on the right.

If you don’t have those small clumps,

then you get fewer small galaxies.

If you look up at the southern sky,

you can actually see
two of these small galaxies,

the largest of the small galaxies
that are orbiting our Milky Way,

the Large Magellanic Cloud
and the Small Magellanic Cloud.

In the last several years,

we have detected a whole bunch more
even smaller galaxies.

This is an example of one of them

that we detected
with the same dark energy survey

that we used to make maps of the universe.

These really small galaxies,

some of them are extremely small.

Some of them have as few
as a few hundred stars,

compared to the few hundred
billion stars in our Milky Way.

So that makes them really hard to find.

But in the last decade,

we’ve actually found
a whole bunch more of these.

We now know of 60 of these tiny galaxies

that are orbiting our own Milky Way.

And these little guys
are a big clue to dark matter.

Because just the existence
of these galaxies tells us

that dark matter
can’t be moving very fast,

and not much can be happening
when it runs into normal matter.

In the next several years,

we’re going to make much more
precise maps of the sky.

And those will help refine our movies

of the whole universe
and the entire galaxy.

Physicists are also making new,
more sensitive experiments

to try to catch some sign
of dark matter in their laboratories.

Dark matter is still a huge mystery.

But it’s a really exciting time
to be working on it.

We have really clear evidence it exists.

From the scale of the smallest galaxies

to the scale of the whole universe.

Will we actually find it
and figure out what it is?

I have no idea.

But it’s going to be
a lot of fun to find out.

We have a lot of possibilities
for discovery,

and we definitely will learn more
about what it is doing

and about what it isn’t.

Regardless of whether we find
that particle anytime soon,

I hope I have convinced you

that this mystery is actually
really close to home.

The search for dark matter

may just be the key to a whole new
understanding of physics

and our place in the universe.

Thank you.

(Applause)

你有没有想过

如果世界有点不同会发生什么?

如果你出生在 5000 年后

而不是今天,你的生活会有什么不同?

如果

大陆在不同的纬度,历史会有什么不同,

或者如果太阳大 10%,太阳系中的生命
会如何发展

好吧,玩
这些可能性

是我的谋生之道,

但与整个宇宙一起玩。

我在计算机中制作模型宇宙。

具有
不同起点

并由不同数量
的不同种类材料组成的数字宇宙。

然后我将
这些宇宙与我们自己的宇宙进行比较

,看看它是由什么组成的以及它是
如何进化的。 迄今为止,通过测量天空

来测试模型的过程

已经教会了我们大量
关于宇宙的知识。

我们了解到的最奇怪的
事情之一

是,宇宙中的大部分物质

都是由
与你和我完全不同的东西构成的。

但没有它,

我们所知道的宇宙就不会存在。

我们用望远镜能看到的一切

只占
宇宙总质量的 15% 左右。

其他所有东西,其中 85%,

不发射或吸收光。

我们无法用肉眼看到它,

我们无法用无线电波

或微波或任何其他类型的光来检测它。

但我们知道它的存在

是因为
它对我们能看到的东西有影响。

这有点像,

如果你想使用这张夜间从太空拍摄的地球照片来绘制
我们星球的表面及其上的

一切


从光的位置得到一些线索,

但有很多你看不到的

东西,从人
到山脉。

你必须
从这些有限的线索中推断出那里有什么。

我们称这种看不见的东西为“暗物质”。

现在,很多
人都听说过暗物质,

但即使你听说过它,

它也可能看起来很抽象,

很遥远,甚至可能无关紧要。

好吧,有趣的是,

暗物质就在我们周围,

而且可能就在这里。

事实上,当你坐在这个房间里时,暗物质

粒子可能正在穿过
你的身体

因为我们在地球上

,地球围绕着太阳旋转,

而太阳正

以每小时约 50 万英里的速度穿过我们的银河系。

但暗物质不会撞到我们,

它只是穿过我们。

那么我们如何更多地了解这一点呢?

它是

什么,它
与我们的存在有什么关系?

好吧,为了
弄清楚我们是如何形成的,

我们首先需要
了解我们的银河系是如何形成的。

这是今天我们银河系的照片

过去 100 亿年

会是什么样子,或者
100 亿年以后会是什么样子?

我们已经
通过对天空的大型调查绘制出数以亿计的其他星系的故事呢?

如果宇宙是由其他东西构成的,

或者其中或多或少有物质,他们的历史会有什么不同?

所以
关于这些模型宇宙的有趣之

处在于它们允许
我们测试这些可能性。

让我们回到宇宙的最初
时刻——


在大爆炸之后的几分之一秒。

在这第一刻,

什么都没有。

宇宙膨胀得非常快。

量子力学告诉我们

,物质每时每刻都在被创造和毁灭

此时的
宇宙膨胀得如此之快

,以至于创造出来的物质
都无法毁灭。

因此,我们认为所有的事情
都是在这段时间创造的。

暗物质


构成你我的常规物质。

现在,让我们再

深入一点,在物质产生

之后,在质子和中子形成

之后,在氢形成之后,

大约在大爆炸之后 40 万年。

宇宙又热又密
,非常光滑,

但并不完全光滑。

这张由名为普朗克卫星的太空望远镜拍摄的图像

向我们展示了

宇宙各个方向的温度。

我们看到的

是,有些地方比其他地方
更热

、更密集。

这张图片中的点

代表
了早期宇宙中质量或多或少的地方。

由于重力,这些斑点变大了。

在过去的 138 亿年里,宇宙一直在膨胀
并且整体密度越来越小

但重力在那些

质量稍大的地方发挥作用,

并将越来越多的质量拉
入这些区域。

现在,所有这一切
都有点难以想象,

所以让我告诉
你我在说什么。

我提到的那些计算机模型
允许我们测试这些想法,

所以让我们看一下其中的一个。

这部电影由我的研究小组制作,

向我们展示了宇宙
在最初时刻之后发生了什么。

你会看到宇宙
开始时非常平稳,

但有些区域的

物质更多一些。

重力开启
,将越来越多的质量

带入那些开始
时有点额外的地方。

随着时间的推移,

你会在一个地方得到足够多的东西

使最初
与暗物质充分混合的氢气

开始从中分离、

冷却、形成恒星,

然后你就会得到一个小星系。

随着时间的推移,数
十亿年,

这些小星系相互碰撞

,合并并成长
为更大的

星系,就像我们自己的银河系一样。

现在,
如果你没有暗物质会发生什么?

如果你没有暗物质,

这些斑点永远不会变得足够块状。

事实证明,在一个致密区域中,你需要至少
一百万倍太阳的质量,

才能开始形成恒星。

没有暗物质,

你永远不会在一个地方得到足够的东西。

所以在这里,我们正在
看两个宇宙,并排。

在其中一个中,您可以

看到事情很快变得结块。

在那个宇宙中,

形成星系真的很容易。

在另一个宇宙中,

一开始
像小团块的东西,

它们只是很小。

不会发生太多事情。

在那个宇宙中,
你不会得到我们的银河系。

或任何其他星系。

你不会得到银河系,

你不会得到太阳,

你不会得到我们。

我们就是无法存在于那个宇宙中。

好的,所以这个疯狂的东西,暗物质,

它是宇宙中大部分的质量,

它现在正在穿过我们,
没有它我们就不会在这里。

它是什么?

好吧,我们不知道。

(笑声)

但是我们有很多有根据的猜测,

还有很多
关于如何找到更多信息的想法。

因此,大多数物理学家
认为暗物质是一种粒子,

在许多方面
类似于我们所知道的亚原子粒子,

如质子、中子和电子。

不管它是什么,


在重力方面的表现非常相似。

但它不发光也不吸收光

,它直接穿过普通物质,

就好像它根本不存在一样。

我们想知道它是什么粒子。

例如,它有多重?

或者,
如果它与正常物质相互作用,会发生什么吗?

物理学家有很多很棒的想法

他们很有创意。

但这真的很难,

因为这些想法涵盖的范围很广。

它可以
小到最小的亚原子粒子,

也可以大
到 100 个太阳的质量。

那么,我们如何弄清楚它是什么?

好吧,物理学家和天文学家

有很多方法
可以寻找暗物质。

我们正在做的一件事

在深地下矿井中建造灵敏的探测器,

等待

穿过我们和地球

的暗物质粒子撞击更致密的物质

并留下
一些痕迹的可能性。

我们正在寻找天空中的暗物质,寻找暗物质

粒子相互碰撞并

产生我们可以

用特殊的伽马射线望远镜看到的高能光的可能性。

我们甚至试图

通过使用瑞士的大型强子对撞机将粒子粉碎在一起
并寻找会发生什么来在地球上制造暗物质

现在,到目前为止,

所有这些实验
都教会了我们很多

关于暗物质不是什么

(笑声)

但还不知道它是什么的知识。

这些实验本来可以看到暗物质确实有很好的想法

他们还没有看到他们,

所以我们必须继续努力寻找
和思考。

现在,了解暗物质是什么的另一种方法

是研究星系。

我们已经讨论过,

如果没有暗物质,我们的星系和许多其他星系
甚至都不会在这里

这些模型还

对有关星系的许多其他事情进行了预测:

它们如何在宇宙中分布,

它们如何移动,

它们如何随时间演化。

我们可以
通过对天空的观察来检验这些预测。

所以让我给你举两个例子

,说明
我们可以用星系进行测量。

首先是我们可以
用星系制作宇宙地图。

我参与了一项
名为暗能量调查的调查,

该调查制作了迄今为止最大
的宇宙地图。

我们测量了八分之一天空
上 1 亿个星系

的位置和形状。

这张地图向我们展示
了天空这一区域的所有物质,

这是
由这 1 亿个星系扭曲的光推断出来的。

那些星系和我们之间的所有物质都扭曲了光

物质的引力
足以弯曲光路。

它给了我们这个形象。

所以这些类型的地图

可以告诉我们有多少
暗物质,

它们也告诉我们它在哪里

以及它是如何随时间变化的。

所以我们试图在最大的尺度上
了解宇宙是由什么组成的

事实证明,宇宙中最小的
星系

提供了一些最好的线索。

那为什么呢?

这是两个

具有两种不同暗物质的模拟宇宙示例。

这两张图片
都向您展示

了银河系等星系周围的区域。

你可以看到
它周围还有很多其他的材料,

小的团块。

现在,在右图中,

暗物质粒子的移动速度
比左图中的慢。

如果这些暗物质
粒子移动得非常快,

那么小团块中的引力
就不足以

让这些快速粒子减速。

他们继续前进。

他们永远不会崩溃
成这些小团块。

所以你最终得到的它们
比右边的宇宙中要少。

如果你没有那些小团块,

那么你会得到更少的小星系。

如果你仰望南方的天空,

你实际上可以看到
两个这样的小星系,

它们是围绕我们银河系运行的最大的小星系

,大麦哲伦星云
和小麦哲伦星云。

在过去的几年里,

我们发现了一大堆
甚至更小的星系。

是我们用与制作宇宙地图相同的暗能量调查探测到的其中一个例子。

这些非常小的星系,

其中一些非常小。

与我们银河系中的数千亿颗恒星相比,其中一些只有几百
颗恒星。

所以这让他们真的很难找到。

但在过去的十年里,

我们实际上发现
了更多这样的东西。

我们现在知道有 60 个这样的小

星系围绕着我们自己的银河系运行。

这些小家伙
是暗物质的重要线索。

因为
这些星系的存在告诉我们

,暗物质
不可能移动得很快,

而且
当它遇到正常物质时也不会发生太多事情。

在接下来的几年里,

我们将制作更
精确的天空地图。

这些将有助于完善我们

关于整个宇宙
和整个银河系的电影。

物理学家也在进行新的、
更敏感的实验

,试图
在他们的实验室中捕捉到一些暗物质的迹象。

暗物质仍然是一个巨大的谜。

但这是一个非常激动人心的
时刻。

我们有非常明确的证据证明它的存在。

从最小

星系的规模到整个宇宙的规模。

我们真的会找到它
并弄清楚它是什么吗?

我不知道。

但这
会很有趣。

我们有很多
发现的可能性

,我们肯定会更多地
了解它正在做什么

和没有做什么。

不管我们是否
很快就能找到那个粒子,

我希望我已经让你

相信这个谜团
实际上离我们很近。

寻找暗物质

可能只是
对物理学

和我们在宇宙中的位置进行全新理解的关键。

谢谢你。

(掌声)