Will future spacecraft fit in our pockets Dhonam Pemba

When you picture a spaceship,
you probably think of something like this,

or this, or maybe this.

What do they all have in common?

Among other things, they’re huge
because they have to carry people, fuel,

and all sorts of supplies,
scientific instruments,

and, in rare cases, planet-killing lasers.

But the next real-world generation
of spacecraft may be much, much smaller.

We’re talking fit-inside-your-pocket tiny.

Imagine sending a swarm of these
microspacecraft out into the galaxy.

They could explore
distant stars and planets

by carrying sophisticated
electronic sensors

that would measure everything
from temperature to cosmic rays.

You could deploy thousands of them

for the cost of a single
space shuttle mission,

exponentially increasing
the amount of data

we could collect about the universe.

And they’re individually expendable,

meaning that we could send them
into environments

that are too risky
for a billion dollar rocket or probe.

Several hundred small spacecraft
are already orbiting the Earth,

taking pictures of outer space,

and collecting data on things,

like the behavior of bacteria
in the Earth’s atmosphere

and magnetic signals that could help
predict earthquakes.

But imagine how much more we could learn
if they could fly beyond Earth’s orbit.

That’s exactly what organizations,
like NASA, want to do:

send microspacecraft
to scout habitable planets

and describe astronomical phenomena
we can’t study from Earth.

But something so small can’t carry
a large engine or tons of fuel,

so how would such a vessel propel itself?

For microspacecraft, it turns out,
you need micropropulsion.

On really small scales,

some of the familiar
rules of physics don’t apply,

in particular, everyday
Newtonian mechanics break down,

and forces that are normally negligible
become powerful.

Those forces include surface tension
and capillary action,

the phenomena
that govern other small things.

Micropropulsion systems can harness
these forces to power spacecraft.

One example of how this might work

is called microfluidic
electrospray propulsion.

It’s a type of ion thruster,

which means that it shoots out
charged particles to generate momentum.

One model being developed at NASA’s
jet propulsion laboratory

is only a couple centimeters
on each side.

Here’s how it works.

That postage-stamp sized metal plate
is studded with a hundred skinny needles

and coated with a metal
that has a low melting point, like indium.

A metal grid sits above the needles,

and an electric field is set up
between the grid and the plate.

When the plate is heated,
the indium melts

and capillary action draws
the liquid metal up the needles.

The electric field tugs
the molten metal upwards,

while surface tension pulls it back,

causing the indium to deform into a cone.

The small radius of the tips
of the needles

makes it possible for the electric field
to overcome the surface tension,

and when that happens,

positively charged ions shoot off at
speeds of tens of kilometers per second.

That stream of ions propels the spacecraft
in the opposite direction,

thanks to Newton’s third law.

And while each ion
is an extremely small particle,

the combined force of so many of them
pushing away from the craft

is enough to generate
significant acceleration.

And unlike the exhaust
that pours out of a rocket engine,

this stream is much smaller
and far more fuel efficient,

which makes it better suited
for long deep-space missions.

These micropropulsion systems
haven’t been fully tested yet,

but some scientists think that they
will provide enough thrust

to break small craft out of Earth’s orbit.

In fact, they’re predicting that thousands
of microspacecraft

will be launched in the next ten years

to gather data that today
we can only dream about.

And that is micro-rocket science.

当你想象一艘宇宙飞船时,
你可能会想到这样的东西,

或者这个,或者也许这个。

他们都有什么共同点?

除其他外,它们之所以巨大,是
因为它们必须携带人员、燃料

和各种补给品、
科学仪器

,在极少数情况下,还要携带杀死行星的激光。

但下一代现实世界
的航天器可能要小得多。

我们正在谈论适合您的口袋里的小东西。

想象一下将一大群这些
微型航天器送入银河系。

他们可以通过携带精密的电子传感器来探索
遥远的恒星和行星

,这些
传感器

可以测量
从温度到宇宙射线的一切。

您可以

以单次
航天飞机任务的成本部署数千个,从而

成倍地增加

我们可以收集的有关宇宙的数据量。

而且它们是单独可消耗的,

这意味着我们可以将它们发送

对于十亿美元的火箭或探测器来说风险太大的环境。

数百个小型航天
器已经在绕地球运行,

拍摄外层空间的照片

并收集有关事物的数据,

例如地球大气中细菌的行为

和有助于
预测地震的磁信号。

但是想象一下,
如果它们能够飞出地球轨道,我们还能学到多少东西。

这正是
NASA 等组织想要做的事情:派遣微型航天器

去侦察可居住的行星,

并描述
我们无法从地球上研究的天文现象。

但是这么小的东西不能
携带大型发动机或吨燃料,

那么这样的船只将如何推动自己呢?

事实证明,对于微型航天器,
您需要微型推进器。

在非常小的范围内,

一些熟悉
的物理规则并不适用

,特别是日常
牛顿力学会崩溃

,通常可以忽略不计的力
变得强大。

这些力包括表面张力
和毛细作用,


是支配其他小东西的现象。

微型推进系统可以利用
这些力量为航天器提供动力。

这可能如何工作的一个例子

称为微流体
电喷雾推进。

它是一种离子推进器,

这意味着它会射出
带电粒子以产生动量。

美国宇航局喷气推进实验室正在开发的一种模型

每边只有几厘米。

这是它的工作原理。

那块邮票大小的金属
板上镶嵌着一百根细针,

并涂
有低熔点金属,如铟。

金属网格位于针上方,

并且
在网格和板之间建立了电场。

当板被加热时
,铟熔化

,毛细作用将
液态金属吸引到针上。

电场
将熔融金属向上

拉,而表面张力将其拉回,

导致铟变形为锥形。

针尖的小半径

使得电场
可以克服表面张力

,当这种情况发生时,

带正电的离子以
每秒几十公里的速度射出。

由于牛顿第三定律,离子流将航天
器推向相反的方向

虽然每个离子
都是一个极小的粒子,

但它们中的许多将它们
推离飞行器

的合力足以产生
显着的加速度。


从火箭发动机排出的废气不同,

这种气流更小
,燃料效率更高,

这使其更
适合长时间的深空任务。

这些微型推进系统
尚未经过全面测试,

但一些科学家认为它们
将提供足够的

推力将小型飞行器从地球轨道上推开。

事实上,他们预测未来十年将发射数千
架微型航天器

以收集今天
我们只能梦想的数据。

这就是微型火箭科学。