Yes scientists are actually building an elevator to space Fabio Pacucci

Sending rockets into space requires
sacrificing expensive equipment,

burning massive amounts of fuel,
and risking potential catastrophe.

So in the space race of the 21st century,

some engineers are abandoning rockets
for something much more exciting:

elevators.

Okay, so maybe riding an elevator
to the stars

isn’t the most thrilling mode
of transportation.

But using a fixed structure to send
smaller payloads

of astronauts and equipment into orbit

would be safer, easier, and cheaper
than conventional rockets.

On a SpaceX Falcon 9 rocket,

every kilogram of cargo costs
roughly $7,500 to carry into orbit.

Space elevators are projected
to reduce that cost by 95%.

Researchers have been investigating
this idea since 1895,

when a visit to what was then
the world’s tallest structure

inspired Russian scientist
Konstantin Tsiolkovsky.

Tsiolkovsky imagined a structure
thousands of kilometers tall,

but even a century later,
no known material is strong enough

to support such a building.

Fortunately, the laws of physics offer
a promising alternative design.

Imagine hopping
on a fast-spinning carousel

while holding a rope attached to a rock.

As long as the carousel keeps spinning,
the rock and rope will remain horizontal,

kept aloft by centrifugal force.

If you’re holding the rope, you’ll feel
this apparent, inertial acceleration

pulling the rock away from the center
of the rotating carousel.

Now, if we replace the carousel
with Earth,

the rope with a long tether,
and the rock with a counterweight,

we have just envisioned
the modern space elevator—

a cable pulled into space
by the physics of our spinning planet.

For this to work, the counterweight would
need to be far enough away

that the centrifugal force
generated by the Earth’s spin

is greater than the planet’s
gravitational pull.

These forces balance out at roughly
36,000 kilometers above the surface,

so the counterweight should be
beyond this height.

Objects at this specific distance
are in geostationary orbit,

meaning they revolve around Earth
at the same rate the planet spins,

thus appearing motionless in the sky.

The counterweight itself
could be anything,

even a captured asteroid.

From here, the tether could be released
down through the atmosphere

and connected to a base station
on the planet’s surface.

To maximize centrifugal acceleration,

this anchor point should be close
to the Equator.

And by making the loading station
a mobile ocean base,

the entire system could be moved at will,

allowing it to maneuver
around extreme weather,

and dodge debris and satellites in space.

Once established, cargo could be loaded
onto devices called climbers,

which would pull packages
along the cable and into orbit.

These mechanisms would require
huge amounts of electricity,

which could be provided by solar panels
or potentially even nuclear systems.

Current designs estimate that
it would take about 8 days

to elevate an object
into geostationary orbit.

And with proper radiation shielding,

humans could theoretically
take the ride too.

So, what’s stopping us from building
this massive structure?

For one thing, a construction accident
could be catastrophic.

But the main problem lies
in the cable itself.

In addition to supporting
a massive amount of weight,

the cable’s material would have
to be strong enough

to withstand the counterweight’s pull.

And because this tension and the force
of gravity would vary at different points,

its strength and thickness would
need to vary as well.

Engineered materials like carbon
nanotubes and diamond nano-threads

seem like our best hope
for producing materials

strong and light enough for the job.

But so far,

we’ve only been able to manufacture
very small nanotube chains.

Another option would be to build
one somewhere with weaker gravity.

Space elevators based on Mars or the Moon

are already possible
with existing materials.

But the huge economic advantage of
owning an Earth-based space elevator

has inspired numerous countries
to try and crack this conundrum.

In fact, some companies
in China and Japan

are already planning
to complete construction by 2050.

将火箭送入太空需要
牺牲昂贵的设备,

燃烧大量燃料,
并冒着潜在灾难的风险。

因此,在 21 世纪的太空竞赛中,

一些工程师正在放弃火箭
,转向更令人兴奋的事情:

电梯。

好吧,也许乘电梯

星星并不是最令人兴奋
的交通方式。

但与传统火箭相比,使用固定结构将
较小

的宇航员和设备有效载荷送入轨道

会更安全、更容易、更便宜

在 SpaceX 猎鹰 9 号火箭上,

每公斤
货物送入轨道的成本约为 7,500 美元。

太空电梯预计
可将成本降低 95%。

自 1895 年以来,研究人员一直在研究这个想法,

当时对
当时世界上最高的结构的访问

激发了俄罗斯科学家
Konstantin Tsiolkovsky 的灵感。

齐奥尔科夫斯基设想了一个
数千公里高的结构,

但即使在一个世纪之后,也
没有已知的材料

足以支撑这样一座建筑。

幸运的是,物理定律提供
了一种有前途的替代设计。

想象一下
在快速旋转的旋转木马上跳跃,

同时拿着一根连接在岩石上的绳索。

只要旋转木马继续旋转
,岩石和绳索就会保持水平,

并通过离心力保持在高处。

如果你握着绳子,你会感觉到
这种明显的惯性加速度

将岩石从
旋转的旋转木马的中心拉开。

现在,如果我们用地球代替旋转木马

,用长绳代替绳索
,用配重代替岩石,

我们就已经构想
出现代太空电梯——

一根
由我们旋转星球的物理原理拉入太空的电缆。

为此,配重
需要足够远


以使地球自转产生

的离心力大于地球的
引力。

这些力
在地表以上大约 36,000 公里处平衡,

因此配重应该
超过这个高度。

这个特定距离的物体
处于地球静止轨道上,

这意味着它们
以与地球相同的速度围绕地球旋转,

因此在天空中看起来一动不动。

配重本身
可以是任何东西,

甚至是捕获的小行星。

从这里,系绳可以
通过大气层释放

并连接
到地球表面的基站。

为了最大化离心加速度,

这个锚点应该
靠近赤道。

通过使装载站
成为移动海洋基地

,整个系统可以随意移动,

使其能够
在极端天气下机动,

并躲避太空中的碎片和卫星。

一旦建立,货物就可以装载
到称为登山者的设备上,

该设备将
沿着电缆将包裹拉入轨道。

这些机制将需要
大量电力,

这些电力可以由太阳能电池板
甚至核系统提供。

目前的设计估计

将一个物体提升
到地球静止轨道大约需要 8 天。

并且通过适当的辐射屏蔽,

理论上人类也
可以搭便车。

那么,是什么阻止我们建造
这个巨大的结构呢?

一方面,建筑事故
可能是灾难性的。

但主要问题
在于电缆本身。

除了
支撑大量重量外

,电缆的材料还
必须足够坚固

以承受配重的拉力。

而且由于这种张力和
重力在不同的点会有所不同,因此

其强度和厚度也
需要有所不同。

碳纳米管和金刚石纳米线

等工程材料似乎是我们
生产

足够坚固和轻便的材料的最大希望。

但到目前为止,

我们只能制造
非常小的纳米管链。

另一种选择是在
重力较弱的地方建造一个。

基于火星或月球的太空电梯

已经可以
使用现有材料实现。


拥有基于地球的太空电梯

的巨大经济优势激发了许多国家
尝试破解这一难题。

事实上,
中国和日本

的一些公司已经在计划
到 2050 年完成建设。