The most detailed map of galaxies black holes and stars ever made Juna Kollmeier

When I was a kid,
I was afraid of the dark.

The darkness is where the monsters are.

And I had this little night light
outside of my bedroom

so that it would never get too dark.

But over time, my fear of the dark
turned to curiosity.

What is out there in the “dark-dark?”

And it turns out

that trying to understand the darkness
is something that’s fascinated humans

for thousands of years, maybe forever.

And we know this

because we find their ancient relics
of their attempts to map the sky.

This tusk is over 30,000 years old.

Some people think
that it’s a carving of Orion

or maybe a calendar.

We don’t know.

The Fuxi star map is over 6,000 years old,

and it’s from a neolithic tomb
in ancient China.

And that little pile of clamshells

underneath the dead guy’s
foot in the middle –

that’s supposed to be the Big Dipper.

Maybe.

The Nebra disk is uncontroversial.

You don’t have to be an astronomer to know
that you’re looking at the Moon phases

or the Sun in eclipse.

And that little group of seven stars,
that’s the Pleiades, the Seven Sisters.

But in any case, the point is clear:

astronomers have been
mapping the sky for a long time.

Why?

It’s our calling card
as a species in the galaxy

to figure things out.

We know our planet,

we cure our diseases,

we cook our food,

we leave our planet.

But it’s not easy.

Understanding the universe is battle.

It is unrelenting, it is time-varying,

and it is one we are all in together.

It is a battle in the darkness
against the darkness.

Which is why Orion has weapons.

In any case, if you’re
going to engage in this battle,

you need to know the battlefield.

So at its core,

mapping the sky involves
three essential elements.

You’ve got objects
that are giving off light,

you’ve got telescopes
that are collecting that light,

and you’ve got instruments

that are helping you understand
what that light is.

Many of you have mapped
the Moon phases over time

with your eyes, your eyes being
your more basic telescope.

And you’ve understood
what that means with your brains,

your brains being one
of your more basic instruments.

Now, if you and a buddy get together,

you would spend over 30 years,

you would map 1,000 stars
extremely precisely.

You would move
the front line to the battle.

And that’s what Tycho Brahe
and his buddy, or his assistant, really,

Johannes Kepler did back in the 1600s.

And they moved the line,

figured out how planets worked,

how they moved around the Sun.

But it wasn’t until about 100 years ago

that we realized

it’s a big universe.

It seems like the universe
is just infinite, which it is,

but the observable universe is finite.

Which means we can win the battle.

But if you’re going to map the universe,

you’re not going to do it
with one or two of your besties.

Mapping the universe takes an army,

an army of curious, creative, craftspeople

who, working together,
can accomplish the extraordinary.

I lead this army of creatives,

in the fifth generation
of the Sloan Digital Sky Survey, SDSS.

And this is how astronomers have managed
to shepherd individual curiosity

through its industrial age,

preserving the individual ability
to make discoveries

but putting into place mega machinery
to truly advance the frontier.

In SDSS, we divide the sky
into three mappers:

one for the stars, one for the black holes

and one for the galaxies.

My survey has two hemispheres,

five telescopes, or 11,
depending on how you count,

10 spectrographs

and millions of objects.

It’s a monster.

So let’s go through the mappers.

The Milky Way galaxy has 250 billion
plus or minus a few hundred billion stars.

That is not a number
that you hold in your head.

That is a number that doesn’t
make practical sense

to pretty much anybody.

You never get 250 billion jelly beans
in your hand. You know?

We’re nowhere near mapping
all of those stars yet.

So we have to choose
the most interesting ones.

In SDSS-V, we’re mapping six million stars

where we think we can measure their age.

Because if you can measure
the age of a star,

that’s like having six million clocks
spread all throughout the Milky Way.

And with that information,

we can unravel the history
and fossil record of our galaxy

and learn how it formed.

I’m just going to cut
right to the chase here.

Black holes are among the most perplexing
objects in the universe.

Why?

Because they are literally just
math incarnate, in a physical form,

that we barely understand.

It’s like the number zero being animated
and walking around the corridors here.

That would be super weird.

These are weirder.

And it’s not just like a basketball

that you smoosh down into a little point
and it’s super dense and that’s weird.

No, smooshed basketballs have a surface.

These things don’t have surfaces,
and we know that now.

Because we’ve seen it.

Or the lack of it.

What’s really interesting
about black holes

is that we can learn a lot about them
by studying the material

just as it passes through that point
of no information return.

Because at that point,

it’s emitting lots of X-rays
and optical and UV and radio waves.

We can actually learn
how these objects grow.

And in SDSS, we’re looking at over
half a million supermassive black holes,

to try to understand how they formed.

Like I said,

we live in the Milky Way,
you guys are all familiar with that.

The Milky Way is a completely
average galaxy.

Nothing funny going on.

But it’s ours, which is great.

We think that the Milky Way,
and all the Milky Ways,

have this really disturbing past

of literally blowing themselves apart.

It’s like every average guy you know

has a history as a punk rock teenager.

That’s very bizarre.

Stars are blowing up in these systems,

black holes are growing at their centers

and emitting a tremendous
amount of energy.

How does that happen,
how does this transformation happen?

And at SDSS, we’re going
to the bellies of the beast

and zooming way in,

to look at these processes
where they are occurring

in order to understand how Sid Vicious
grows up into Ward Cleaver.

My arsenal.

These are my two big telescopes.

The Apache Point Observatory
hosts the Sloan telescope in New Mexico,

and the Las Campanas Observatory in Chile

hosts the two-and-a-half-meter
telescope, the du Pont.

Two and a half meters
is the size of our mirror,

which was huge for Tycho and Kepler.

But it’s actually not so big today.

There are way bigger telescopes out there.

But in SDSS we use new instruments
on these old telescopes

to make them interesting.

We capture light from all
of those objects into our aperture,

and that light is then focused
at the focal plane,

where our instruments sit
and process that light.

What’s new in SDSS-V

is that we’re making the focal plane
entirely robotic.

That’s right: robots.

(Laughter)

So I’m going to show them to you,

but they’re fierce and terrifying,

and I want you all to just take a breath.

(Exhales) Trigger warning.

And with no apologies to all
the Blade Runners among you,

here they are.

(Laughter)

I have 1,000 of these,

500 in the focal plane
of each telescope in each hemisphere.

And this is how they move on the sky.

So these are our objects and a star field,

so you’ve got stars,
galaxies, black holes.

And our robots move to those objects
as we pass over them

in order to capture the light

from those stars and galaxies
and black holes, and yes,

it is weird to capture black hole light,

but we’ve already gone over
that black holes are weird.

One more thing.

Stars are exploding all the time,

like this one did back in 1987
in our cosmic backyard.

Black holes are growing all the time.

There is a new sky every night.

Which means we can’t just
map the sky one time.

We have to map the sky multiple times.

So in SDSS-V, we’re going back
to each part of the sky multiple times

in order to see how
these objects change over time.

Because those changes in time
encode the physics,

and they encode how these objects
are growing and changing.

Mow the sky.

OK, let me just recap.

Global survey, two hemispheres,

five telescopes, 10 spectrographs,
millions of objects, mow the sky,

creative army, robots, yeah.

So you’re thinking, “Wow.

She must have this
industrial machine going,

no room for the individual, curious,
lone wolf genius,” right?

And you’d be 100 percent wrong.

Meet Hanny’s Voorwerp.

Hanny van Arkel was a Dutch schoolteacher

who was analyzing the public
versions of the SDSS data,

when she found this
incredibly rare type of object,

which is now a subject of major study.

She was able to do this

because SDSS, since its beginning
and by mandate from the Sloan Foundation,

has made its data both publicly available

and usable to a broad range of audiences.

She’s a citizen – yeah, clap for that.

Clap for that.

(Applause)

Hanny is a citizen scientist,

or as I like to call them,

“citizen warriors.”

And she shows that you don’t have to be
a fancy astrophysicist to participate.

You just have to be curious.

A few years ago,

my four-year-old asked,
“Can moons have moons?”

And I set about to answer this question

because even though many
four-year-olds over all of time

have probably asked this question,

many experts, including myself,
didn’t know the answer.

These are the moons in our solar system
that can host hypothetical submoons.

And that just goes to show you
that there are so many basic questions

left to be understood.

And this brings me to the most
important point about SDSS.

Because, yeah, the stars, the galaxies,
the black holes, the robots –

that’s all super cool.

But the coolest thing of all

is that eensy-weensy creatures
on a rubble pile

around a totally average star
in a totally average galaxy

can win the battle
to understand their world.

Every dot in this video is a galaxy.

Every dot.

(Cheers) (Applause)

I’m showing here the number of galaxies

that astronomers have mapped
in large surveys since about 1980.

You can see SDSS kick in around Y2K.

If we stay on this line,

we will map every large galaxy
in the observable universe by 2060.

Think about that.

Think about it: we’ve gone
from arranging clamshells

to general relativity to SDSS
in a few thousand years –

and if we hang on 40 more,

we can map all the galaxies.

But we have to stay on the line.

Will that be our choice?

There are dark forces in this world

that will rob our entire species
of our right to understand our universe.

Don’t be afraid of the dark.

Fight back.

Join us.

Thank you.

(Applause)

当我还是个孩子的时候,
我害怕黑暗。

黑暗是怪物所在的地方。

我在卧室外面有这个小夜灯

,这样它就不会太暗了。

但随着时间的推移,我对黑暗的恐惧
变成了好奇。

“黑暗-黑暗”中有什么?

事实证明

,试图理解黑暗
是让人类着迷

数千年甚至永远的东西。

我们之所以知道这一点,

是因为我们发现
了他们尝试绘制天空图的古老遗物。

这颗象牙已有 30,000 多年的历史。

有些人
认为这是猎户座的雕刻

或日历。

我们不知道。

伏羲星图已有6000多年的历史

,出自中国古代新石器时代的墓葬

中间那个死人脚下的那一小堆蛤壳

——

应该是北斗七星。

或许。

内布拉圆盘是无可争议的。

您不必成为天文学家就
知道您正在查看月相

或日食中的太阳。

还有那一小群七星,
那是昴星团,七姐妹。

但无论如何,这一点很清楚:

天文学家长期以来一直在
绘制天空图。

为什么?

作为银河系中的一个物种,这是我们解决问题的

名片。

我们了解我们的星球,

我们治愈我们的疾病,

我们烹饪我们的食物,

我们离开我们的星球。

但这并不容易。

了解宇宙就是战斗。

它是无情的,它是随时间变化的

,它是我们都在一起的一个。

这是一场在黑暗中
对抗黑暗的战斗。

这就是猎户座拥有武器的原因。

无论如何,如果你
要参与这场战斗,

你需要了解战场。

因此,从根本上说,

绘制天空图涉及
三个基本要素。


有发出光的物体,有

收集光的望远镜

,还有帮助你了解
光是什么的仪器。

你们中的许多人已经用眼睛绘制
了随着时间的推移的月

相,你的眼睛是
你更基本的望远镜。

你已经
明白这对你的大脑意味着什么,

你的大脑
是你更基本的工具之一。

现在,如果你和一个伙伴聚在一起,

你会花费 30 多年,

你会非常精确地绘制 1000 颗星星


会把前线转移到战斗中。

这就是第谷布拉赫
和他的伙伴,或者他的助手,真的,

约翰内斯开普勒在 1600 年代所做的。

他们移动了这条线,

弄清楚行星是如何工作的,

它们是如何围绕太阳移动的。

但直到大约 100 年前

,我们才意识到

这是一个大宇宙。

似乎宇宙
是无限的,

但可观测的宇宙是有限的。

这意味着我们可以赢得这场战斗。

但是如果你要绘制宇宙地图,

你不会
和你的一两个好朋友一起做。

绘制宇宙图需要一支军队,

一支由好奇、有创造力的工匠组成的军队

,他们齐心协力,
可以成就非凡。

在第五
代斯隆数字巡天(SDSS)中,我领导着这支创意大军。

这就是天文学家如何在工业时代成功
地引导个人的好奇心

保留个人
的发现能力,

同时安装大型机器
来真正推进前沿。

在 SDSS 中,我们将天空
划分为三个映射器:

一个用于恒星,一个用于黑洞

,一个用于星系。

我的调查有两个半球、

五个望远镜或 11 个,
这取决于你的计数方式、

10 个光谱仪

和数百万个物体。

这是一个怪物。

因此,让我们通过映射器。

银河系有 2500
亿颗正负数千亿颗恒星。


不是你脑海中的数字。

这是一个

对几乎任何人都没有实际意义的数字。

你永远不会得到 2500 亿颗
糖豆。 你懂?

我们离绘制
所有这些恒星的地图还差得很远。

所以我们必须
选择最有趣的。

在 SDSS-V 中,我们正在绘制 600 万颗恒星

,我们认为可以测量它们的年龄。

因为如果你能测量
一颗恒星的年龄,

那就像有六百万个时钟
遍布整个银河系。

有了这些信息,

我们就可以解开银河系的历史
和化石记录,

并了解它是如何形成的。

我只是在
这里直奔主题。

黑洞是宇宙中最令人困惑的
物体之一。

为什么?

因为它们实际上只是
数学的化身,以物理形式

,我们几乎无法理解。

这就像数字零被动画
并在这里的走廊里走来走去。

那将是非常奇怪的。

这些更奇怪。

而且它不仅仅是一个篮球

,你可以把它滑到一个小点上
,它超级密集,这很奇怪。

不,smoshed 篮球有一个表面。

这些东西没有表面
,我们现在知道了。

因为我们已经看到了。

或者缺乏它。 关于黑洞

真正有趣的

是,我们可以通过研究材料来了解很多关于它们的信息

就像它通过那个
没有信息返回的点一样。

因为在那个时候,

它会发射大量的 X 射线
、光波、紫外线和无线电波。

我们实际上可以
了解这些物体是如何生长的。

在 SDSS 中,我们正在研究超过
50 万个超大质量黑洞,

试图了解它们是如何形成的。

就像我说的,

我们生活在银河系,
你们都很熟悉。

银河系是一个完全
普通的星系。

没有什么好笑的事情发生。

但这是我们的,这很棒。

我们认为银河系,
以及所有的银河系,

都有一段真正令人不安的过去

,那就是真的把自己炸飞了。

就像你认识的每个普通人

都有朋克摇滚少年的历史一样。

这很奇怪。

恒星在这些系统中爆炸,

黑洞在它们的中心生长

并释放出巨大
的能量。

这是如何发生的,
这种转变是如何发生的?

在SDSS,我们将
深入研究野兽的腹部

并放大

,查看
它们发生的这些过程,

以了解Sid Vicious如何
成长为Ward Cleaver。

我的武器库。

这是我的两个大望远镜。 新墨西哥州

的阿帕奇角天文台
拥有斯隆望远镜

,智利的拉斯坎帕纳斯天文台

拥有两米半的
望远镜杜邦。

两米半
是我们镜子的大小,

这对第谷和开普勒来说是巨大的。

但实际上它今天并没有那么大。

那里有更大的望远镜。

但在SDSS中,我们
在这些旧望远镜

上使用了新仪器,使它们变得有趣。

我们将
所有这些物体的光捕捉到我们的光圈中,

然后这些光聚焦
在焦平面上

,我们的仪器就坐在
那里处理这些光。

SDSS-V 的新功能

是我们正在使焦平面
完全机器人化。

没错:机器人。

(笑声)

所以我要把它们展示给你们看,

但它们又凶又可怕

,我希望你们都喘口气。

(呼气)触发警告。

并且没有向
你们中间的所有银翼杀手道歉

,他们来了。

(笑声)

我有 1000 个,

每个半球每个望远镜的焦平面上都有 500 个。

这就是它们在天空中移动的方式。

所以这些是我们的物体和一个恒星场,

所以你有恒星、
星系、黑洞。

当我们经过这些物体时,我们的机器人会移动到这些物体上

,以捕捉

来自这些恒星、星系

黑洞的光,是的,捕捉黑洞光很奇怪,

但我们已经讨论
过黑洞是 奇怪的。

还有一件事。

恒星一直在爆炸,

就像 1987 年
在我们的宇宙后院发生的那样。

黑洞一直在增长。

每晚都有新的天空。

这意味着我们不能只
绘制一次天空。

我们必须多次映射天空。

因此,在 SDSS-V 中,我们将
多次返回天空的每个部分

,以查看
这些对象如何随时间变化。

因为这些时间变化
编码了物理学

,它们编码了这些物体
是如何生长和变化的。

刈天。

好的,让我回顾一下。

全球调查,两个半球,

五个望远镜,十个光谱仪,
数百万个物体,割天空,

创意大军,机器人,是的。

所以你在想,“哇。

她一定让这台
工业机器运转起来,

没有空间给个人的、好奇的、
孤独的狼天才”,对吗?

你会 100% 错。

认识 Hanny 的 Voorwerp。

汉尼·范·阿克尔 (Hanny van Arkel) 是一名荷兰教师

,当时她正在分析
SDSS 数据的公开版本,

当时她发现了这种
极其罕见的物体,

现在是主要研究的主题。

她之所以能够做到这一点,

是因为 SDSS 从一开始
并受斯隆基金会的授权,

就已将其数据公开

并可供广大受众使用。

她是公民——是的,为此鼓掌。

为此鼓掌。

(掌声)

汉尼是公民科学家,

或者我喜欢称他们为

“公民战士”。

她表明,你不必成为
一个花哨的天体物理学家也能参与。

你只需要好奇。

几年前,

我四岁的孩子问:
“月亮有月亮吗?”

我开始回答这个问题,

因为尽管
一直以来可能有很多四岁的孩子

问过这个问题

,但包括我自己在内的许多专家
都不知道答案。

这些是我们太阳系中的卫星
,可以承载假设的亚卫星。

这只是向您
表明,还有很多基本问题

需要理解。

这让我
想到了关于 SDSS 最重要的一点。

因为,是的,星星、星系
、黑洞、机器人——

这一切都非常酷。

但最酷的

是,

在一个完全普通的星系中,围绕着一颗完全普通的恒星的瓦砾堆上的小动物

可以赢得这场战斗,
以了解他们的世界。

这段视频中的每个点都是一个星系。

每一个点。

(欢呼声)(掌声)

我在这里展示了

自 1980 年左右以来天文学家在大型调查中绘制的星系数量。

你可以看到 SDSS 在 Y2K 左右开始运行。

如果我们保持在这条线上,到 2060 年,

我们将绘制
出可观测宇宙中的每一个大型星系。

想想看。

想一想:几千年来,我们已经
从排列蛤壳

到广义相对论再到 SDSS——

如果我们再坚持 40 年,

我们就可以绘制所有星系的地图。

但我们必须保持在线。

那会是我们的选择吗?

这个世界上有黑暗势力

将剥夺我们整个物种
了解我们宇宙的权利。

不要害怕黑暗。

回击。

加入我们。

谢谢你。

(掌声)