Inside the black hole image that made history Sheperd Doeleman

Chris Anderson: Shep,
thank you so much for coming.

I think your plane landed
literally two hours ago in Vancouver.

Such a treat to have you.

So, talk us through how do you get
from Einstein’s equation to a black hole?

Sheperd Doeleman: Over 100 years ago,

Einstein came up with this
geometric theory of gravity

which deforms space-time.

So, matter deforms space-time,

and then space-time tells matter in turn
how to move around it.

And you can get enough matter
into a small enough region

that it punctures space-time,

and that even light can’t escape,

the force of gravity
keeps even light inside.

CA: And so, before that,
the reason the Earth moves around the Sun

is not because the Sun
is pulling the Earth as we think,

but it’s literally changed
the shape of space

so that we just
sort of fall around the Sun.

SD: Exactly, the geometry of space-time

tells the Earth
how to move around the Sun.

You’re almost seeing a black hole
puncture through space-time,

and when it goes so deeply in,

then there’s a point at which
light orbits the black hole.

CA: And so that’s, I guess,
is what’s happening here.

This is not an image,

this is a computer simulation
of what we always thought,

like, the event horizon
around the black hole.

SD: Until last week, we had no idea
what a black hole really looked like.

The best we could do were simulations
like this in supercomputers,

but even here you see this ring of light,

which is the orbit of photons.

That’s where photons
literally move around the black hole,

and around that is this hot gas
that’s drawn to the black hole,

and it’s hot because of friction.

All this gas is trying to get
into a very small volume, so it heats up.

CA: A few years ago,
you embarked on this mission

to try and actually image
one of these things.

And I guess you took –

you focused on this galaxy way out there.

Tell us about this galaxy.

SD: This is the galaxy –

we’re going to zoom into the galaxy M87,
it’s 55 million light-years away.

CA: Fifty-five million.

SD: Which is a long way.

And at its heart,

there’s a six-and-a-half-billion-
solar-mass black hole.

That’s hard for us
to really fathom, right?

Six and a half billion suns
compressed into a single point.

And it’s governing some of the energetics
of the center of this galaxy.

CA: But even though that thing is so huge,
because it’s so far away,

to actually dream
of getting an image of it,

that’s incredibly hard.

The resolution would be incredible
that you need.

SD: Black holes are the smallest
objects in the known universe.

But they have these outsize effects
on whole galaxies.

But to see one,

you would need to build a telescope
as large as the Earth,

because the black hole
that we’re looking at

gives off copious radio waves.

It’s emitting all the time.

CA: And that’s exactly what you did.

SD: Exactly. What you’re seeing here

is we used telescopes
all around the world,

we synchronized them perfectly
with atomic clocks,

so they received the light waves
from this black hole,

and then we stitched all of that data
together to make an image.

CA: To do that

the weather had to be right

in all of those locations
at the same time,

so you could actually get a clear view.

SD: We had to get lucky
in a lot of different ways.

And sometimes, it’s better
to be lucky than good.

In this case, we were both,
I like to think.

But light had to come from the black hole.

It had to come
through intergalactic space,

through the Earth’s atmosphere,
where water vapor can absorb it,

and everything worked out perfectly,

the size of the Earth
at that wavelength of light,

one millimeter wavelength,

was just right to resolve that black hole,
55 million light-years away.

The universe was telling us what to do.

CA: So you started capturing
huge amounts of data.

I think this is like half the data
from just one telescope.

SD: Yeah, this is one of the members
of our team, Lindy Blackburn,

and he’s sitting with half the data

recorded at the Large
Millimeter Telescope,

which is atop a 15,000-foot
mountain in Mexico.

And what he’s holding there
is about half a petabyte.

Which, to put it in terms
that we might understand,

it’s about 5,000 people’s
lifetime selfie budget.

(Laughter)

CA: It’s a lot of data.

So this was all shipped,
you couldn’t send this over the internet.

All this data was shipped to one place

and the massive computer effort began
to try and analyze it.

And you didn’t really know

what you were going to see
coming out of this.

SD: The way this technique
works that we used –

imagine taking an optical mirror
and smashing it

and putting all the shards
in different places.

The way a normal mirror works

is the light rays bounce
off the surface, which is perfect,

and they focus in a certain point
at the same time.

We take all these recordings,

and with atomic clock precision

we align them perfectly,
later in a supercomputer.

And we recreate
kind of an Earth-sized lens.

And the only way to do that
is to bring the data back by plane.

You can’t beat the bandwidth
of a 747 filled with hard discs.

(Laughter)

CA: And so, I guess a few weeks
or a few months ago,

on a computer screen somewhere,

this started to come into view.

This moment.

SD: Well, it took a long time.

CA: I mean, look at this.

That was it.

That was the first image.

(Applause)

So tell us what
we’re really looking at there.

SD: I still love it.

(Laughter)

So what you’re seeing
is that last orbit of photons.

You’re seeing Einstein’s
geometry laid bare.

The puncture in space-time is so deep

that light moves around in orbit,

so that light behind the black hole,
as I think we’ll see soon,

moves around and comes to us
on these parallel lines

at exactly that orbit.

It turns out, that orbit is
the square root of 27

times just a handful
of fundamental constants.

It’s extraordinary
when you think about it.

CA: When …

In my head, initially,
when I thought of black holes,

I’m thinking that is the event horizon,

there’s lots of matter and light
whirling around in that shape.

But it’s actually
more complicated than that.

Well, talk us through this animation,
because it’s light being lensed around it.

SD: You’ll see here that some light
from behind it gets lensed,

and some light does a loop-the-loop
around the entire orbit of the black hole.

But when you get enough light

from all this hot gas
swirling around the black hole,

then you wind up seeing
all of these light rays

come together on this screen,

which is a stand-in
for where you and I are.

And you see the definition of this ring
begin to come into shape.

And that’s what Einstein predicted
over 100 years ago.

CA: Yeah, that is amazing.

So tell us more about
what we’re actually looking at here.

First of all, why is part of it
brighter than the rest?

SD: So what’s happening
is that the black hole is spinning.

And you wind up with some of the gas
moving towards us below

and receding from us on the top.

And just as the train whistle
has a higher pitch

when it’s coming towards you,

there’s more energy from the gas
coming towards us than going away from us.

You see the bottom part brighter

because the light is actually
being boosted in our direction.

CA: And how physically big is that?

SD: Our entire solar system
would fit well within that dark region.

And if I may,

that dark region is the signature
of the event horizon.

The reason we don’t see light from there,

is that the light that would come
to us from that place

was swallowed by the event horizon.

So that – that’s it.

CA: And so when we think of a black hole,

you think of these huge rays
jetting out of it,

which are pointed
directly in our direction.

Why don’t we see them?

SD: This is a very powerful black hole.

Not by universal standards,
it’s still powerful,

and from the north and south poles
of this black hole

we think that jets are coming.

Now, we’re too close
to really see all the jet structure,

but it’s the base of those jets
that are illuminating the space-time.

And that’s what’s being bent
around the black hole.

CA: And if you were in a spaceship
whirling around that thing somehow,

how long would it take
to actually go around it?

SD: First, I would give anything
to be in that spaceship.

(Laughter)

Sign me up.

There’s something called the –
if I can get wonky for one moment –

the innermost stable circular orbit,

that’s the innermost orbit at which
matter can move around a black hole

before it spirals in.

And for this black hole, it’s going to be
between three days and about a month.

CA: It’s so powerful,
it’s weirdly slow at one level.

I mean, you wouldn’t even notice

falling into that event horizon
if you were there.

SD: So you may have heard
of “spaghettification,”

where you fall into a black hole

and the gravitational field on your feet
is much stronger than on your head,

so you’re ripped apart.

This black hole is so big

that you’re not going to become
a spaghetti noodle.

You’re just going to drift
right through that event horizon.

CA: So, it’s like a giant tornado.

When Dorothy was whipped by a tornado,
she ended up in Oz.

Where do you end up
if you fall into a black hole?

(Laughter)

SD: Vancouver.

(Laughter)

CA: Oh, my God.

(Applause)

It’s the red circle, that’s terrifying.

No, really.

SD: Black holes really are
the central mystery of our age,

because that’s where the quantum world
and the gravitational world come together.

What’s inside is a singularity.

And that’s where
all the forces become unified,

because gravity finally is strong enough
to compete with all the other forces.

But it’s hidden from us,

the universe has cloaked it
in the ultimate invisibility cloak.

So we don’t know what happens in there.

CA: So there’s a smaller one of these
in our own galaxy.

Can we go back
to our own beautiful galaxy?

This is the Milky Way, this is home.

And somewhere in the middle of that
there’s another one,

which you’re trying to find as well.

SD: We already know it’s there,
and we’ve already taken data on it.

And we’re working on those data right now.

So we hope to have something
in the near future, I can’t say when.

CA: It’s way closer
but also a lot smaller,

maybe the similar kind of size
to what we saw?

SD: Right. So it turns out
that the black hole in M87,

that we saw before,

is six and a half billion solar masses.

But it’s so far away
that it appears a certain size.

The black hole in the center of our galaxy
is a thousand times less massive,

but also a thousand times closer.

So it looks the same
angular size on the sky.

CA: Finally, I guess,
a nod to a remarkable group of people.

Who are these guys?

SD: So these are only some of the team.

We marveled at the resonance
that this image has had.

If you told me that it would be
above the fold in all of these newspapers,

I’m not sure I would
have believed you, but it was.

Because this is a great mystery,

and it’s inspiring for us,
and I hope it’s inspiring to everyone.

But the more important thing is that
this is just a small number of the team.

We’re 200 people strong with 60 institutes

and 20 countries and regions.

If you want to build a global telescope
you need a global team.

And this technique that we use
of linking telescopes around the world

kind of effortlessly sidesteps
some of the issues that divide us.

And as scientists, we naturally
come together to do something like this.

CA: Wow, boy, that’s inspiring
for our whole team this week.

Shep, thank you so much for what you did
and for coming here.

SD: Thank you.

(Applause)

克里斯安德森:谢普,
非常感谢你的到来。

我想你的飞机
实际上是在两小时前降落在温哥华的。

有你真是太好了。

那么,和我们谈谈你是如何
从爱因斯坦方程得到黑洞的?

Sheperd Doeleman:100 多年前,

爱因斯坦提出了这种

使时空变形的几何引力理论。

因此,物质使时空变形,

然后时空反过来告诉物质
如何围绕它移动。

你可以将足够多的物质
放入一个足够小的区域

,它会刺穿

时空,即使光也无法逃逸

,引力
将光保持在里面。

CA:因此,在此之前,
地球绕太阳运动的原因

并不是因为
太阳像我们想象的那样在拉地球,

而是它确实改变
了空间的形状,

所以我们只是
绕着太阳下落。

SD:确切地说,时空几何

告诉地球
如何围绕太阳移动。

你几乎可以看到一个黑洞
穿透时空

,当它深入到如此深的地方时,

就会有一个
光点围绕黑洞运行。

CA:所以,我想,
这就是这里发生的事情。

这不是图像,


是我们一直认为的计算机模拟,

例如黑洞周围的事件视界

SD:直到上周,我们才
知道黑洞的真正样子。

我们能做的最好的事情
就是在超级计算机中进行类似的模拟,

但即使在这里你也能看到这个光环,

它是光子的轨道。

这就是光子
在黑洞周围移动的地方

,周围是被
吸引到黑洞

的热气体,并且由于摩擦而变热。

所有这些气体都试图
进入一个非常小的体积,所以它会升温。

CA:几年前,
你开始了这项任务

,试图并实际想象
其中的一件事。

而且我猜你采取了 -

你专注于这个银河系。

告诉我们这个星系。

SD:这就是星系——

我们将放大到 M87 星系,
它距离我们 5500 万光年。

CA:五千五百万。

SD:还有很长的路要走。

在它的核心,

有一个 6 亿
太阳质量的黑洞。

这对我们
来说很难理解,对吧?

六个半亿的太阳
压缩成一个点。

它控制
着这个星系中心的一些能量。

CA:但即使那东西是如此巨大,
因为它是如此遥远,

要真正
梦想得到它的图像,

那是非常困难的。 您需要

的分辨率将令人
难以置信。

SD:黑洞是
已知宇宙中最小的物体。

但是它们对整个星系都有这些巨大的影响

但是要看到一个,

你需要建造一个
和地球一样大的望远镜,

因为我们正在观察的黑洞

会发出大量的无线电波。

它一直在发射。

CA:这正是你所做的。

SD:没错。 你在这里看到的

是我们
在世界各地使用望远镜,

我们将它们
与原子钟完美同步,

所以它们接收到
来自这个黑洞的光波,

然后我们将所有这些数据
拼接在一起制作图像。

CA:要做到这一点

,所有这些
地点的天气必须同时正确,

这样你才能真正获得清晰的视野。

SD:我们必须
通过很多不同的方式来获得幸运。

有时,
幸运总比好人好。

在这种情况下,我们都是,
我喜欢这样想。

但光必须来自黑洞。

它必须
穿过星际空间,

穿过地球的大气层,
在那里水蒸气可以吸收它

,一切都很完美,

在那个波长的光下,地球的大小,

一毫米波长,

正好解决那个黑洞,
5500万光年远。

宇宙告诉我们该做什么。

CA:所以你开始捕获
大量数据。

我认为这
就像来自一台望远镜的一半数据。

SD:是的,这是
我们团队的成员之一,Lindy Blackburn

,他

正坐在墨西哥一座 15,000 英尺高的
山顶上的大型毫米望远镜上记录一半的数据。

他持有的
东西大约有 0.5 PB。


我们可能理解的术语来说,

这大约是 5,000 人
一生的自拍预算。

(笑声)

CA:有很多数据。

所以这些都是发货的,
你不能通过互联网发送。

所有这些数据都被运送到一个地方

,大量的计算机工作开始
尝试分析它。

你真的不

知道你
会看到什么。

SD:
我们使用的这种技术的工作方式——

想象一下拿一个光学镜
,把它打碎,

然后把所有的碎片
放在不同的地方。

普通镜子的工作方式

是光线
从表面反弹,这是完美的

,它们同时聚焦在某个点
上。

我们记录了所有这些记录,

并以原子钟的

精度将它们完美地对齐,
然后在超级计算机中进行。

我们重新创造
了一种地球大小的镜头。

而做到这一点的唯一方法
是通过飞机将数据带回。

您无法击败
装满硬盘的 747 的带宽。

(笑声)

CA:所以,我猜几周
或几个月前,

在某处的电脑屏幕上,

这开始出现在人们的视野中。

此时。

SD:嗯,花了很长时间。

CA:我的意思是,看看这个。

就是这样。

那是第一张图片。

(掌声)

所以告诉
我们我们真正看到的是什么。

SD:我仍然喜欢它。

(笑声)

所以你看到的
是光子的最后一个轨道。

你会看到爱因斯坦的
几何学暴露无遗。

时空中的穿孔是如此之深

,以至于光在轨道上四处移动,

所以黑洞后面的光
,我想我们很快就会看到,

四处移动,并
在这些平行

线上正好在那个轨道上到达我们身边。

事实证明,这个轨道
是 27 倍的平方根,

只是少数
几个基本常数。

当你想到它时,它是非同寻常的。

CA:当……

在我的脑海中,最初,
当我想到黑洞时,

我认为那是事件视界,

有很多物质和光
以这种形状在周围旋转。

但实际上
比这更复杂。

好吧,通过这个动画告诉我们,
因为它周围有光。

SD:你会在这里看到一些
来自它后面的光被透镜化了

,一些光
在黑洞的整个轨道上形成了一个循环。

但是当你

从围绕黑洞旋转的所有这些热气体中获得足够的光时

,你最终会看到
所有这些光线

聚集在这个屏幕上,

这是
你我所在位置的替代品。

你会看到这个戒指的定义
开始成形。

这就是爱因斯坦
100 多年前所预言的。

CA:是的,这太棒了。

因此,请告诉我们更多关于
我们在这里实际看到的内容。

首先,为什么它的一部分
比其他部分更亮?

SD:所以发生的事情
是黑洞在旋转。

最后你会发现一些气体
在下面向我们移动

,在上面从我们身上退去。

正如火车汽笛

向您驶来

时的音调更高一样,汽油
向我们驶来的能量比离开我们的要多。

你会看到底部更亮,

因为光线实际上
是朝着我们的方向增强的。

CA:那有多大?

SD:我们的整个太阳系
都可以很好地适应那个黑暗区域。

如果可以的话,

那个黑暗区域
是事件视界的标志。

我们从那里看不到光的原因


从那个地方射向我们的光

被事件视界吞噬了。

所以——就是这样。

CA:所以当我们想到一个黑洞时,

你会想到从它喷出的这些巨大的射线

它们直接指向
我们的方向。

为什么我们看不到他们?

SD:这是一个非常强大的黑洞。

不是按照普遍标准,
它仍然很强大

,我们认为从这个黑洞的北极和南极

喷流正在到来。

现在,我们离
真正看到所有喷流结构太近了,

但它是那些照亮时空的喷流的基础

这就是黑洞周围弯曲的东西

CA:如果你在宇宙飞船里
绕着那个东西旋转,

那么
真正绕着它旋转需要多长时间?

SD:首先,我
愿意为进入那艘宇宙飞船付出任何代价。

(笑声)

给我报名。

有一种东西叫做——
如果我有一瞬间的迷惑——

最里面的稳定圆形轨道,

那是物质在它螺旋进入之前可以绕着黑洞移动的最里面的轨道

。对于这个黑洞,它将是
三天到一个月左右。

CA:它太强大了,
在一个层面上它的速度出奇的慢。

我的意思是,如果你在那里,你甚至不会注意到

落入那个事件视界

SD:所以你可能听说
过“意大利面条化”

,你掉进一个黑洞

,你脚上的引力场
比你头上的强得多,

所以你被撕裂了。

这个黑洞太大了

,你不会
变成意大利面条。

你将
直接穿过那个事件视界。

CA:所以,它就像一场巨大的龙卷风。

当多萝西被龙卷风鞭打时,
她最终来到了奥兹。

如果你掉进黑洞,你最终会去哪里

(笑声)

SD:温哥华。

(笑声)

CA:哦,我的上帝。

(鼓掌

)就是那个红圈,好吓人。

不完全是。

SD:黑洞确实
是我们这个时代的核心谜团,

因为那是量子世界
和引力世界结合的地方。

里面是一个奇点。

这就是
所有力量统一的地方,

因为重力最终强大到
足以与所有其他力量竞争。

但它对我们隐藏

,宇宙已经将它隐藏
在终极隐形斗篷中。

所以我们不知道那里会发生什么。

CA:所以
在我们自己的银河系中还有一个较小的。

我们能
回到我们自己美丽的银河系吗?

这里是银河,这里是家。

中间的某个地方
还有另一个

,你也想找到它。

SD:我们已经知道它的存在,
并且我们已经获取了它的数据。

我们现在正在处理这些数据。

所以我们希望
在不久的将来有一些东西,我不能说什么时候。

CA:它更接近
但也更小,

可能与
我们看到的大小相似?

SD:对。 所以事实证明
,我们之前看到的 M87 中的黑洞

是 6 个半太阳质量。

但距离太远
,看起来有一定的大小。

我们银河系中心的黑洞
质量小一千倍,

但距离也近一千倍。

所以它在天空中看起来是相同的
角度大小。

CA:最后,我想,
是对一群了不起的人的致敬。

这些人是谁?

SD:所以这些只是团队中的一部分。

我们惊叹于
这张图片所产生的共鸣。

如果你告诉我它
会出现在所有这些报纸上,

我不确定我
会相信你,但确实如此。

因为这是一个很大的谜团

,它对我们很有
启发,我希望它对每个人都有启发。

但更重要的是,
这只是团队中的一小部分。

我们拥有 200 名员工,拥有 60 个机构

和 20 个国家和地区。

如果你想建造一个全球望远镜,
你需要一个全球团队。

我们使用这种
连接世界各地望远镜的技术

毫不费力地回避了
一些使我们分裂的问题。

作为科学家,我们自然而然地
走到一起做这样的事情。

CA:哇,男孩,这
对本周我们整个团队来说都是鼓舞人心的。

谢普,非常感谢你所做的一切
和来到这里。

SD:谢谢。

(掌声)