A new way to study the brains invisible secrets Ed Boyden

Hello, everybody.

I brought with me today a baby diaper.

You’ll see why in a second.

Baby diapers have interesting properties.

They can swell enormously
when you add water to them,

an experiment done
by millions of kids every day.

(Laughter)

But the reason why

is that they’re designed
in a very clever way.

They’re made out of a thing
called a swellable material.

It’s a special kind of material that,
when you add water,

it will swell up enormously,

maybe a thousand times in volume.

And this is a very useful,
industrial kind of polymer.

But what we’re trying to do
in my group at MIT

is to figure out if we can do
something similar to the brain.

Can we make it bigger,

big enough that you
can peer inside

and see all the tiny building blocks,
the biomolecules,

how they’re organized in three dimensions,

the structure, the ground truth
structure of the brain, if you will?

If we could get that,

maybe we could have a better understanding
of how the brain is organized

to yield thoughts and emotions

and actions and sensations.

Maybe we could try to pinpoint
the exact changes in the brain

that result in diseases,

diseases like Alzheimer’s
and epilepsy and Parkinson’s,

for which there are few
treatments, much less cures,

and for which, very often,
we don’t know the cause or the origins

and what’s really causing them to occur.

Now, our group at MIT

is trying to take
a different point of view

from the way neuroscience has
been done over the last hundred years.

We’re designers. We’re inventors.

We’re trying to figure out
how to build technologies

that let us look at and repair the brain.

And the reason is,

the brain is incredibly,
incredibly complicated.

So what we’ve learned
over the first century of neuroscience

is that the brain is a very
complicated network,

made out of very specialized
cells called neurons

with very complex geometries,

and electrical currents will flow
through these complexly shaped neurons.

Furthermore, neurons
are connected in networks.

They’re connected by little junctions
called synapses that exchange chemicals

and allow the neurons
to talk to each other.

The density of the brain is incredible.

In a cubic millimeter of your brain,

there are about 100,000 of these neurons

and maybe a billion of those connections.

But it’s worse.

So, if you could zoom in to a neuron,

and, of course, this is just
our artist’s rendition of it.

What you would see are thousands
and thousands of kinds of biomolecules,

little nanoscale machines
organized in complex, 3D patterns,

and together they mediate
those electrical pulses,

those chemical exchanges
that allow neurons to work together

to generate things like thoughts
and feelings and so forth.

Now, we don’t know how
the neurons in the brain are organized

to form networks,

and we don’t know how
the biomolecules are organized

within neurons

to form these complex, organized machines.

If we really want to understand this,

we’re going to need new technologies.

But if we could get such maps,

if we could look at the organization
of molecules and neurons

and neurons and networks,

maybe we could really understand
how the brain conducts information

from sensory regions,

mixes it with emotion and feeling,

and generates our decisions and actions.

Maybe we could pinpoint the exact set
of molecular changes that occur

in a brain disorder.

And once we know how
those molecules have changed,

whether they’ve increased in number
or changed in pattern,

we could use those
as targets for new drugs,

for new ways of delivering
energy into the brain

in order to repair the brain
computations that are afflicted

in patients who suffer
from brain disorders.

We’ve all seen lots of different
technologies over the last century

to try to confront this.

I think we’ve all seen brain scans

taken using MRI machines.

These, of course, have the great power
that they are noninvasive,

they can be used on living human subjects.

But also, they’re spatially crude.

Each of these blobs that you see,
or voxels, as they’re called,

can contain millions
and millions of neurons.

So it’s not at the level of resolution

where it can pinpoint
the molecular changes that occur

or the changes in the wiring
of these networks

that contributes to our ability
to be conscious and powerful beings.

At the other extreme,
you have microscopes.

Microscopes, of course, will use light
to look at little tiny things.

For centuries, they’ve been used
to look at things like bacteria.

For neuroscience,

microscopes are actually how neurons
were discovered in the first place,

about 130 years ago.

But light is fundamentally limited.

You can’t see individual molecules
with a regular old microscope.

You can’t look at these tiny connections.

So if we want to make our ability
to see the brain more powerful,

to get down to the ground truth structure,

we’re going to need to have
even better technologies.

My group, a couple years ago,
started thinking:

Why don’t we do the opposite?

If it’s so darn complicated
to zoom in to the brain,

why can’t we make the brain bigger?

It initially started

with two grad students in my group,
Fei Chen and Paul Tillberg.

Now many others in my group
are helping with this process.

We decided to try to figure out
if we could take polymers,

like the stuff in the baby diaper,

and install it physically
within the brain.

If we could do it just right,
and you add water,

you can potentially blow the brain up

to where you could distinguish
those tiny biomolecules from each other.

You would see those connections
and get maps of the brain.

This could potentially be quite dramatic.

We brought a little demo here.

We got some purified baby diaper material.

It’s much easier
just to buy it off the Internet

than to extract the few grains
that actually occur in these diapers.

I’m going to put just one teaspoon here

of this purified polymer.

And here we have some water.

What we’re going to do

is see if this teaspoon
of the baby diaper material

can increase in size.

You’re going to see it increase in volume
by about a thousandfold

before your very eyes.

I could pour much more of this in there,

but I think you’ve got the idea

that this is a very,
very interesting molecule,

and if can use it in the right way,

we might be able
to really zoom in on the brain

in a way that you can’t do
with past technologies.

OK. So a little bit of chemistry now.

What’s going on
in the baby diaper polymer?

If you could zoom in,

it might look something like
what you see on the screen.

Polymers are chains of atoms
arranged in long, thin lines.

The chains are very tiny,

about the width of a biomolecule,

and these polymers are really dense.

They’re separated by distances

that are around the size of a biomolecule.

This is very good

because we could potentially
move everything apart in the brain.

If we add water, what will happen is,

this swellable material
is going to absorb the water,

the polymer chains will move
apart from each other,

and the entire material
is going to become bigger.

And because these chains are so tiny

and spaced by biomolecular distances,

we could potentially blow up the brain

and make it big enough to see.

Here’s the mystery, then:

How do we actually make
these polymer chains inside the brain

so we can move all the biomolecules apart?

If we could do that,

maybe we could get
ground truth maps of the brain.

We could look at the wiring.

We can peer inside
and see the molecules within.

To explain this, we made some animations

where we actually look
at, in these artist renderings,

what biomolecules might look
like and how we might separate them.

Step one: what we’d have
to do, first of all,

is attach every biomolecule,
shown in brown here,

to a little anchor, a little handle.

We need to pull the molecules
of the brain apart from each other,

and to do that, we need
to have a little handle

that allows those polymers to bind to them

and to exert their force.

Now, if you just take baby diaper
polymer and dump it on the brain,

obviously, it’s going to sit there on top.

So we need to find a way
to make the polymers inside.

And this is where we’re really lucky.

It turns out, you can
get the building blocks,

monomers, as they’re called,

and if you let them go into the brain

and then trigger the chemical reactions,

you can get them to form
those long chains,

right there inside the brain tissue.

They’re going to wind their way
around biomolecules

and between biomolecules,

forming those complex webs

that will allow you, eventually,
to pull apart the molecules

from each other.

And every time one
of those little handles is around,

the polymer will bind to the handle,
and that’s exactly what we need

in order to pull the molecules
apart from each other.

All right, the moment of truth.

We have to treat this specimen

with a chemical to kind of loosen up
all the molecules from each other,

and then, when we add water,

that swellable material is going
to start absorbing the water,

the polymer chains will move apart,

but now, the biomolecules
will come along for the ride.

And much like drawing
a picture on a balloon,

and then you blow up the balloon,

the image is the same,

but the ink particles have moved
away from each other.

And that’s what we’ve been able
to do now, but in three dimensions.

There’s one last trick.

As you can see here,

we’ve color-coded
all the biomolecules brown.

That’s because they all
kind of look the same.

Biomolecules are made
out of the same atoms,

but just in different orders.

So we need one last thing

in order to make them visible.

We have to bring in little tags,

with glowing dyes
that will distinguish them.

So one kind of biomolecule
might get a blue color.

Another kind of biomolecule
might get a red color.

And so forth.

And that’s the final step.

Now we can look at something like a brain

and look at the individual molecules,

because we’ve moved them
far apart enough from each other

that we can tell them apart.

So the hope here is that
we can make the invisible visible.

We can turn things that might seem
small and obscure

and blow them up

until they’re like constellations
of information about life.

Here’s an actual video
of what it might look like.

We have here a little brain in a dish –

a little piece of a brain, actually.

We’ve infused the polymer in,

and now we’re adding water.

What you’ll see is that,
right before your eyes –

this video is sped up about sixtyfold –

this little piece of brain tissue
is going to grow.

It can increase by a hundredfold
or even more in volume.

And the cool part is, because
those polymers are so tiny,

we’re separating biomolecules
evenly from each other.

It’s a smooth expansion.

We’re not losing the configuration
of the information.

We’re just making it easier to see.

So now we can take
actual brain circuitry –

here’s a piece of the brain
involved with, for example, memory –

and we can zoom in.

We can start to actually look at
how circuits are configured.

Maybe someday we could read out a memory.

Maybe we could actually look
at how circuits are configured

to process emotions,

how the actual wiring
of our brain is organized

in order to make us who we are.

And of course, we can pinpoint, hopefully,

the actual problems in the brain
at a molecular level.

What if we could actually
look into cells in the brain

and figure out, wow, here are the 17
molecules that have altered

in this brain tissue that has been
undergoing epilepsy

or changing in Parkinson’s disease

or otherwise being altered?

If we get that systematic list
of things that are going wrong,

those become our therapeutic targets.

We can build drugs that bind those.

We can maybe aim energy
at different parts of the brain

in order to help people
with Parkinson’s or epilepsy

or other conditions that affect
over a billion people

around the world.

Now, something interesting
has been happening.

It turns out that throughout biomedicine,

there are other problems
that expansion might help with.

This is an actual biopsy
from a human breast cancer patient.

It turns out that if you look at cancers,

if you look at the immune system,

if you look at aging,
if you look at development –

all these processes are involving
large-scale biological systems.

But of course, the problems begin
with those little nanoscale molecules,

the machines that make the cells
and the organs in our body tick.

So what we’re trying
to do now is to figure out

if we can actually use this technology
to map the building blocks of life

in a wide variety of diseases.

Can we actually pinpoint
the molecular changes in a tumor

so that we can actually
go after it in a smart way

and deliver drugs that might wipe out
exactly the cells that we want to?

You know, a lot of medicine
is very high risk.

Sometimes, it’s even guesswork.

My hope is we can actually turn
what might be a high-risk moon shot

into something that’s more reliable.

If you think about the original moon shot,

where they actually landed on the moon,

it was based on solid science.

We understood gravity;

we understood aerodynamics.

We knew how to build rockets.

The science risk was under control.

It was still a great, great
feat of engineering.

But in medicine, we don’t
necessarily have all the laws.

Do we have all the laws
that are analogous to gravity,

that are analogous to aerodynamics?

I would argue that with technologies

like the kinds I’m talking about today,

maybe we can actually derive those.

We can map the patterns
that occur in living systems,

and figure out how to overcome
the diseases that plague us.

You know, my wife and I
have two young kids,

and one of my hopes as a bioengineer
is to make life better for them

than it currently is for us.

And my hope is, if we can
turn biology and medicine

from these high-risk endeavors
that are governed by chance and luck,

and make them things
that we win by skill and hard work,

then that would be a great advance.

Thank you very much.

(Applause)

大家好。

我今天带了一个婴儿尿布。

你马上就会明白为什么。

婴儿尿布具有有趣的特性。

当你给它们加水时,它们会大大膨胀,


是数百万儿童每天进行的一项实验。

(笑声)

但原因

是它们的
设计非常巧妙。

它们是由一种
叫做可膨胀材料的东西制成的。

这是一种特殊的材料,
当你加水时,

它会膨胀得很大,

体积可能会膨胀一千倍。

这是一种非常有用的
工业聚合物。

但是我们
在麻省理工学院的小组中试图做的

是弄清楚我们是否可以做
一些类似于大脑的事情。

我们能不能把它做得更大,

足够大,让你
可以窥视里面

,看到所有微小的构建块
,生物分子,

它们是如何在三个维度

上组织的,大脑的结构,基本事实
结构,如果你愿意的话?

如果我们能做到这一点,

也许我们可以更好地理解
大脑是如何

组织产生思想、情感

、行动和感觉的。

也许我们可以尝试找出导致疾病
的确切大脑变化,

例如阿尔茨海默氏症
、癫痫和帕金森氏症

,这些
疾病的治疗方法很少,治疗方法也更少

,而且我们常常
不知道原因 或起源

以及真正导致它们发生的原因。

现在,我们在麻省理工学院的小组

正试图

从过去一百年来神经科学的研究方式中采取不同的观点

我们是设计师。 我们是发明家。

我们正试图弄清楚
如何构建

让我们能够观察和修复大脑的技术。

原因是

,大脑非常
非常复杂。

所以我们在
神经科学的第一个世纪学到的

是,大脑是一个非常
复杂的网络,

由非常特殊的
细胞组成,称为神经元,

具有非常复杂的几何形状

,电流将流
过这些形状复杂的神经元。

此外,神经元
连接在网络中。

它们通过称为突触的小连接连接起来,这些连接
交换化学物质

并允许神经元
相互交谈。

大脑的密度令人难以置信。

在你大脑的一立方毫米中,

大约有 100,000 个这样的神经元,

并且可能有 10 亿个这样的连接。

但情况更糟。

所以,如果你可以放大到一个神经元

,当然,这只是
我们的艺术家对它的再现。

你会看到
成千上万种生物分子,

以复杂的 3D 模式组织的小型纳米级机器

,它们共同调节
这些电脉冲,

这些化学交换
使神经元能够协同工作

以产生思想
和感觉等 .

现在,我们不
知道大脑中的神经元是如何组织

起来形成网络的

,我们也不知道
生物分子是如何

在神经元内组织

起来形成这些复杂的、有组织的机器的。

如果我们真的想了解这一点,

我们将需要新技术。

但如果我们能得到这样的地图,

如果我们能观察
分子、神经元

、神经元和网络的组织,

也许我们就能真正
理解大脑如何

从感觉区域传导信息,

将其与情绪和感觉混合,

并产生我们的决定和 行动。

也许我们可以
查明发生

在大脑疾病中的确切分子变化集。

一旦我们知道
这些分子是如何发生变化的,

无论是数量增加
还是模式发生变化,

我们就可以将它们
用作新药的靶点,

寻找将
能量输送到大脑

的新方法,以修复大脑
计算 适用


患有脑部疾病的患者。 在上个世纪,

我们都看到了许多不同的
技术

来尝试应对这一问题。

我想我们都看过

使用 MRI 机器进行的脑部扫描。

当然,它们的强大之处
在于它们是非侵入性的,

它们可以用于活的人类受试者。

而且,它们在空间上是粗糙的。

你看到的每个斑点
或体素,正如它们所说的那样,

都可以包含数
百万个神经元。

因此,它不是在分辨率级别上

,它可以精确定位
发生的分子变化


这些网络布线的变化,

这些变化有助于我们
成为有意识和强大的存在的能力。

在另一个极端,
你有显微镜。

当然,显微镜会用光
来观察微小的东西。

几个世纪以来,它们一直被
用来观察细菌之类的东西。

对于神经科学来说,

显微镜实际上是最早发现神经元的方式

大约在 130 年前。

但光从根本上是有限的。

你不能
用普通的旧显微镜看到单个分子。

你看不到这些微小的联系。

因此,如果我们想让我们
看到大脑的能力更强大,

深入了解基本事实结构,

我们将需要拥有
更好的技术。

几年前,我的团队
开始思考:

为什么我们不做相反的事情呢?

如果
放大大脑如此复杂,

为什么我们不能让大脑更大呢?

它最初是从

我小组中的两名研究生
Fei Chen 和 Paul Tillberg 开始的。

现在,我小组中的许多其他人都在
帮助这个过程。

我们决定尝试弄清楚
我们是否可以将聚合物(

例如婴儿尿布中

的物质)
植入大脑中。

如果我们能做得恰到好处,
并且你加水,

你就有可能把大脑炸

到可以将
这些微小的生物分子彼此区分开来的地方。

你会看到这些联系
并获得大脑地图。

这可能非常戏剧化。

我们在这里带来了一个小演示。

我们得到了一些纯化的婴儿尿布材料。

从互联网上购买

比提取
这些尿布中实际存在的少量谷物要容易得多。

我打算在这里只放一茶匙

这种纯化的聚合物。

我们这里有一些水。

我们要做的

是看看这
茶匙婴儿尿布材料是否

可以增加尺寸。

你会在你的眼前看到它的体积
增加了大约一千倍

我可以把更多的东西倒进去,

但我想你已经

知道这是一个非常
非常有趣的分子

,如果能以正确的方式使用它,

我们也许
可以真正放大大脑

以一种你不能
用过去的技术做的方式。

行。 所以现在有点化学反应。

婴儿尿布聚合物中发生了什么?

如果您可以放大,

它可能看起来就像
您在屏幕上看到的一样。

聚合物是
排列成细长线的原子链。

这些链非常小,

大约有生物分子的宽度,

而且这些聚合物非常致密。

它们之间的

距离约为生物分子大小。

这非常好,

因为我们有可能
将大脑中的所有东西都分开。

如果我们加水,会发生什么,

这种可膨胀的
材料会吸收水分

,聚合物链会
彼此分开

,整个
材料会变得更大。

而且由于这些链是如此之小

,并且以生物分子的距离隔开,

我们可能会炸毁大脑

并使其大到可以看到。

那么,谜底就是:

我们如何
在大脑中制造这些聚合物链,

以便将所有生物分子分开?

如果我们能做到这一点,

也许我们可以得到
大脑的真实地图。

我们可以看看接线。

我们可以窥视内部
并看到内部的分子。

为了解释这一点,我们制作了一些动画

,在这些艺术家的渲染图中,

我们实际看到了生物分子的
外观以及我们如何将它们分离。

第一步:首先,我们
要做的

是将每个生物分子(
此处以棕色显示)连接

到一个小锚点、一个小把手上。

我们需要
将大脑中的分子彼此分开

,为此,我们
需要一个小把手

,让这些聚合物与它们结合

并发挥作用。

现在,如果你只是把婴儿尿布
聚合物倒在大脑上,

很明显,它会坐在上面。

所以我们需要找到一种方法
来制造里面的聚合物。

这就是我们真正幸运的地方。

事实证明,你
可以获得所谓的构建块

,单体

,如果你让它们进入大脑

然后触发化学反应,

你可以让它们形成
那些长链,

就在大脑内部 组织。

它们将
绕着生物分子

和生物分子之间盘旋,

形成那些复杂的网络

,最终让你

分子彼此分开。

每当这些小把手中的一个出现时

,聚合物就会结合到把手上
,这正是我们需要

的,以便将分子
彼此拉开。

好吧,关键时刻。

我们必须

用一种化学物质处理这个标本,以使
所有分子彼此松散,

然后,当我们加水时,

可膨胀的材料
会开始吸收水分

,聚合物链会分开,

但是现在, 生物分子
将随之而来。

就像
在气球上画一幅画,

然后你把气球吹起来

,图像是一样的,

但是墨水颗粒已经
相互远离了。

这就是我们
现在能够做到的,但在三个方面。

还有最后一个技巧。

正如您在此处看到的,

我们已将
所有生物分子标记为棕色。

那是因为
它们看起来都一样。

生物分子
由相同的原子组成,

只是顺序不同。

所以我们需要最后一

件事来让它们可见。

我们必须带上小标签,

用发光的染料
来区分它们。

所以一种生物分子
可能会变成蓝色。

另一种生物分子
可能会变成红色。

等等。

这是最后一步。

现在我们可以看看像大脑这样的东西

,看看单个分子,

因为我们已经将它们
彼此分开得足够远

,我们可以将它们区分开来。

所以这里的希望是
我们可以让不可见的东西变得可见。

我们可以将看似
渺小和晦涩的事物

转而炸毁,

直到它们像
关于生命的信息星座一样。


是它可能看起来的实际视频。

我们在盘子里有一个小

大脑——实际上是一小块大脑。

我们已经注入了聚合物

,现在我们正在加水。

你会看到,
就在你眼前——

这个视频被加速了大约 60 倍——

这小块脑组织
正在生长。

它的体积可以增加一百倍
甚至更多。

最酷的部分是,因为
这些聚合物非常小,

我们将生物分子
彼此均匀地分离。

这是一个平滑的扩展。

我们不会丢失信息的
配置。

我们只是让它更容易看到。

因此,现在我们可以获取
实际的大脑电路——

这里是与记忆有关的大脑部分

——我们可以放大。

我们可以开始实际查看
电路是如何配置的。

也许有一天我们可以读出一段记忆。

也许我们实际上可以
看看电路是如何配置

来处理情绪的,我们

大脑的实际线路
是如何组织起来的

,以使我们成为我们自己。

当然,我们希望能够在分子水平上查明

大脑中的实际问题

如果我们真的
可以研究大脑中的细胞

并弄清楚,哇,这里有 17 个
分子

在这个已经
经历癫痫症

或帕金森病

或其他方式被改变的脑组织中发生了变化?

如果我们有系统地列出
出错的事情,

这些就会成为我们的治疗目标。

我们可以制造结合这些的药物。

我们也许可以将能量
瞄准大脑的不同部位,

以帮助
患有帕金森氏症或癫痫症

或其他影响
全球超过 10 亿人的疾病的人

现在,有趣
的事情发生了。

事实证明,在整个生物医学领域

,扩展可能有助于解决其他问题。

这是
来自人类乳腺癌患者的实际活检。

事实证明,如果你看看癌症,

如果你看看免疫系统,

如果你看看衰老,
如果你看看发育——

所有这些过程都涉及到
大规模的生物系统。

但当然,问题
始于那些微小的纳米级分子,

即制造
我们体内细胞和器官的机器。

所以我们
现在要做的是弄清楚

我们是否真的可以使用这项技术
来绘制

各种疾病中的生命组成部分。

我们真的可以查明
肿瘤中的分子变化,

以便我们能够
以一种聪明的方式真正地追踪它

并提供可能
完全消灭我们想要的细胞的药物吗?

要知道,很多药物
都是非常高风险的。

有时,它甚至是猜测。

我的希望是,我们实际上可以
将可能是高风险的登月计划

变成更可靠的东西。

如果你想想最初的月球拍摄

,他们实际上是在月球上着陆的,

那是基于坚实的科学。

我们了解重力;

我们了解空气动力学。

我们知道如何制造火箭。

科学风险得到控制。

这仍然是一项伟大
的工程壮举。

但在医学上,我们
不一定拥有所有的法律。

我们是否拥有所有
类似于重力、

类似于空气动力学的定律?

我会争辩说,

像我今天谈论的那种技术,

也许我们实际上可以推导出这些技术。

我们可以绘制出
生命系统中发生的模式,

并找出如何克服
困扰我们的疾病。

你知道,我和我的妻子
有两个年幼的孩子

,作为一名生物工程师,我的一个希望
是让他们的生活

比我们现在更好。

我的希望是,如果我们能够
将生物学和医学

从这些受机会和运气支配的高风险工作
中转变为

我们通过技能和努力工作赢得的东西,

那将是一个巨大的进步。

非常感谢你。

(掌声)