How do we study the stars YuanSen Ting

The city sky is, frankly, rather boring.

If you look up at the patches of
murk between buildings,

you might be able to pick out
The Big Dipper,

or perhaps, Orion’s Belt.

But hold on.

Look at that murky patch again
and hold our your thumb.

How many stars do you think
are behind it?

Ten, twenty? Guess again.

If you looked at that
thumbnail-sized patch of sky

with the Hubble Space Telescope,

instead of points of light,
you’d see smudges.

These aren’t stars.

They’re galaxies, just like our Milky Way.

Cities of billions of stars,

and more than 1,000 of them
are hidden behind your thumb.

The universe is bigger than
you can see from the city,

and even bigger than the starry sky
you can see from the countryside.

This is the universe as
astrophysicists see it,

with more stars than all the grains
of sand on Earth.

By staring up at the stars at night,

you’ve taken part in the oldest science
in human history.

The study of the heavens is older than

navigation, agriculture, perhaps
even language itself.

Yet unlike other sciences,
astronomy is purely observational.

We cannot control the parameters
of our experiments from lab benches.

Our best technology can send
man to the moon,

and probes to the edge of
the solar system.

But these distances are vanishingly small

compared to the yawning gulfs
between stars.

So how can we know so much
about other galaxies,

what they’re made of, how many there are,
or that they’re even there at all?

Well, we can start with the first thing we
see when we look up at night: the stars.

What we are trying to learn
is their properties.

What are they made of? How hot are they?
How massive? How old?

How far are they from Earth?

And believe it or not,

we can learn all of these things
simply from the light shining in the sky.

We can decipher one kind of stellar message
by turning starlight into rainbows.

When you look at a rainbow on Earth,

you’re really looking at light
from our Sun

being scattered through water droplets
in the atmosphere

into all the different wavelengths
that make it up.

And we study the light from other stars,

we can create rainbows on demand
using not water droplets,

but other specific instruments that
disperse light.

When we look at the scattered
light from our sun,

we see something strange:
dark lines in our rainbow.

These lines are the characteristic
fingerprints of atoms.

Each type of atom in the solar atmosphere
soaks up light at specific wavelengths,

and the amount of absorption depends on
how many of these atoms there are.

So by observing how much light is missing
at these characteristic wavelengths,

we can tell not only what elements are
in the Sun’s atmosphere,

but even their concentrations.

And the same idea can be applied to
study other stars.

Make a spectral rainbow,
see what’s missing,

and figure out which elements are present.

Bingo. Now you know what stars
are made of.

But we aren’t restricted to just
the wavelengths that our eyes perceive.

Consider radio waves.

Yes, they can bring the Billboard Top 100
to your car,

but they can also travel almost
unimpeded through space.

Because they’ve come so far,

radio waves can tell us the very
early history of the universe,

from just a few thousand years
after The Big Bang.

We can also study the infrared light,
emitted by colder objects,

like the gas and dust clouds in space,

and the ultraviolet light from the hot
stars recently born from those clouds.

Studying different wavelengths
not only gives us

a more complete picture
of any single object

but also different views of the universe.

For this reason, astrophysicists use
several different kinds of telescopes

covering the spectrum from the infrared
to the ultraviolet to the X-ray,

from giant radio dishes to giant
silver mirrors to space satellites,

detecting light that would be otherwise
blocked by the Earth’s atmosphere.

Astrophysicists don’t just see

the billions of stars among
the billions of galaxies in the universe.

They hear, feel and sense them
through many channels,

each revealing a different story.

But it all begins with light,
the kind we can see and the kind we can’t.

Want to know the secrets of the Universe?

Just follow the light.

坦率地说,城市的天空相当无聊。

如果你抬头看看
建筑物之间的一片片黑暗,

你可能会
发现北斗七星,

或者也许是猎户座腰带。

但是坚持住。

再看看那个模糊的补丁
,握住我们的拇指。

你觉得背后有多少明星?

十个,二十个? 再猜。

如果你用哈勃太空望远镜观察
那片缩略图大小的天空

而不是光点,
你会看到污迹。

这些不是明星。

它们是星系,就像我们的银河系一样。

拥有数十亿颗星星的城市,

其中超过 1,000 颗
隐藏在您的拇指后面。

宇宙比
你在城市看到的

更大,甚至比
你在乡村看到的星空还要大。

这就是
天体物理学家眼中的宇宙

,恒星比地球上所有的沙粒还要多

通过在晚上仰望星空,

你参与了人类历史上最古老的科学

对天体的研究比

航海、农业
甚至语言本身还要古老。

然而,与其他科学不同的
是,天文学纯粹是观察性的。

我们无法
在实验室工作台上控制我们的实验参数。

我们最好的技术可以将
人类送上月球,

并探测到
太阳系的边缘。

与恒星之间的巨大鸿沟相比,这些距离微乎其微

那么我们怎么能
对其他星系了解这么多,

它们是由什么组成的,有多少,
或者它们根本就在那里?

好吧,我们可以从晚上抬头看到的第一件事开始
:星星。

我们正在尝试学习的
是它们的属性。

它们是由什么制成的? 他们有多热?
有多大? 几岁?

他们离地球有多远?

信不信由你,

我们
可以从天空中闪耀的光芒中学到所有这些东西。

我们可以
通过将星光变成彩虹来破译一种恒星信息。

当你看到地球上的彩虹时,

你实际上看到的是
来自太阳

的光通过
大气中的水滴散射

到构成彩虹的所有不同波长
中。

我们研究来自其他恒星的光,

我们可以根据需要创建彩虹
,而不是使用水滴,

而是使用其他
分散光的特定仪器。

当我们观察
来自太阳的散射光时,

我们会看到一些奇怪的东西:
彩虹中的黑线。

这些线条是原子的特征
指纹。

太阳大气中的每种原子都会
吸收特定波长的光

,吸收量
取决于这些原子的数量。

因此,通过观察
这些特征波长处缺少多少光,

我们不仅可以知道
太阳大气中有哪些元素,

甚至可以知道它们的浓度。

同样的想法也可以应用于
研究其他恒星。

制作一个光谱彩虹,
看看缺少什么,

并找出存在哪些元素。

答对了。 现在你知道星星
是由什么组成的了。

但我们并不仅限于
眼睛感知的波长。

考虑无线电波。

是的,他们可以将 Billboard Top 100
带到您的汽车上,

但他们也可以几乎
不受阻碍地穿越太空。

因为它们已经走了这么远,所以

无线电波可以告诉我们
宇宙的早期历史,


大爆炸之后的几千年开始。

我们还可以研究
由较冷物体发出的红外光,

例如太空中的气体和尘埃云,

以及
最近从这些云中诞生的炽热恒星发出的紫外光。

研究不同的波长
不仅可以让

我们更全面地
了解任何单个物体

,还可以了解宇宙的不同观点。

出于这个原因,天体物理学家使用
了几种不同类型的望远镜,

涵盖了从红外线
到紫外线到 X 射线的光谱,

从巨大的无线电天线到巨大的
银镜再到太空卫星,以

探测否则会
被地球大气层阻挡的光线。

天体物理学家不仅仅看到

宇宙中数十亿星系中的数十亿颗恒星

他们通过许多渠道听到、感受和感知它们

每个渠道都揭示了一个不同的故事。

但这一切都始于光,
我们可以看到的那种和我们看不到的那种。

想知道宇宙的秘密吗?

跟着光走。