A robot that runs and swims like a salamander Auke Ijspeert

This is Pleurobot.

Pleurobot is a robot that we designed
to closely mimic a salamander species

called Pleurodeles waltl.

Pleurobot can walk, as you can see here,

and as you’ll see later, it can also swim.

So you might ask,
why did we design this robot?

And in fact, this robot has been designed
as a scientific tool for neuroscience.

Indeed, we designed it
together with neurobiologists

to understand how animals move,

and especially how the spinal cord
controls locomotion.

But the more I work in biorobotics,

the more I’m really impressed
by animal locomotion.

If you think of a dolphin swimming
or a cat running or jumping around,

or even us as humans,

when you go jogging or play tennis,

we do amazing things.

And in fact, our nervous system solves
a very, very complex control problem.

It has to coordinate
more or less 200 muscles perfectly,

because if the coordination is bad,
we fall over or we do bad locomotion.

And my goal is to understand
how this works.

There are four main components
behind animal locomotion.

The first component is just the body,

and in fact we should never underestimate

to what extent the biomechanics
already simplify locomotion in animals.

Then you have the spinal cord,

and in the spinal cord you find reflexes,

multiple reflexes that create
a sensorimotor coordination loop

between neural activity in the spinal cord
and mechanical activity.

A third component
are central pattern generators.

These are very interesting circuits
in the spinal cord of vertebrate animals

that can generate, by themselves,

very coordinated
rhythmic patterns of activity

while receiving
only very simple input signals.

And these input signals

coming from descending modulation
from higher parts of the brain,

like the motor cortex,
the cerebellum, the basal ganglia,

will all modulate activity
of the spinal cord

while we do locomotion.

But what’s interesting is to what extent
just a low-level component,

the spinal cord, together with the body,

already solve a big part
of the locomotion problem.

You probably know it by the fact
that you can cut the head off a chicken,

it can still run for a while,

showing that just the lower part,
spinal cord and body,

already solve a big part of locomotion.

Now, understanding how this works
is very complex,

because first of all,

recording activity in the spinal cord
is very difficult.

It’s much easier to implant electrodes
in the motor cortex

than in the spinal cord,
because it’s protected by the vertebrae.

Especially in humans, very hard to do.

A second difficulty is that locomotion
is really due to a very complex

and very dynamic interaction
between these four components.

So it’s very hard to find out
what’s the role of each over time.

This is where biorobots like Pleurobot
and mathematical models

can really help.

So what’s biorobotics?

Biorobotics is a very active field
of research in robotics

where people want to
take inspiration from animals

to make robots to go outdoors,

like service robots
or search and rescue robots

or field robots.

And the big goal here
is to take inspiration from animals

to make robots that can handle
complex terrain –

stairs, mountains, forests,

places where robots
still have difficulties

and where animals
can do a much better job.

The robot can be a wonderful
scientific tool as well.

There are some very nice projects
where robots are used,

like a scientific tool for neuroscience,
for biomechanics or for hydrodynamics.

And this is exactly
the purpose of Pleurobot.

So what we do in my lab
is to collaborate with neurobiologists

like Jean-Marie Cabelguen,
a neurobiologist in Bordeaux in France,

and we want to make spinal cord models
and validate them on robots.

And here we want to start simple.

So it’s good to start with simple animals

like lampreys, which are
very primitive fish,

and then gradually
go toward more complex locomotion,

like in salamanders,

but also in cats and in humans,

in mammals.

And here, a robot becomes
an interesting tool

to validate our models.

And in fact, for me, Pleurobot
is a kind of dream becoming true.

Like, more or less 20 years ago
I was already working on a computer

making simulations of lamprey
and salamander locomotion

during my PhD.

But I always knew that my simulations
were just approximations.

Like, simulating the physics in water
or with mud or with complex ground,

it’s very hard to simulate that
properly on a computer.

Why not have a real robot
and real physics?

So among all these animals,
one of my favorites is the salamander.

You might ask why,
and it’s because as an amphibian,

it’s a really key animal
from an evolutionary point of view.

It makes a wonderful link
between swimming,

as you find it in eels or fish,

and quadruped locomotion,
as you see in mammals, in cats and humans.

And in fact, the modern salamander

is very close to the first
terrestrial vertebrate,

so it’s almost a living fossil,

which gives us access to our ancestor,

the ancestor to all terrestrial tetrapods.

So the salamander swims

by doing what’s called
an anguilliform swimming gait,

so they propagate a nice traveling wave
of muscle activity from head to tail.

And if you place
the salamander on the ground,

it switches to what’s called
a walking trot gait.

In this case, you have nice
periodic activation of the limbs

which are very nicely coordinated

with this standing wave
undulation of the body,

and that’s exactly the gait
that you are seeing here on Pleurobot.

Now, one thing which is very surprising
and fascinating in fact

is the fact that all this can be generated
just by the spinal cord and the body.

So if you take
a decerebrated salamander –

it’s not so nice
but you remove the head –

and if you electrically
stimulate the spinal cord,

at low level of stimulation
this will induce a walking-like gait.

If you stimulate a bit more,
the gait accelerates.

And at some point, there’s a threshold,

and automatically,
the animal switches to swimming.

This is amazing.

Just changing the global drive,

as if you are pressing the gas pedal

of descending modulation
to your spinal cord,

makes a complete switch
between two very different gaits.

And in fact, the same
has been observed in cats.

If you stimulate the spinal cord of a cat,

you can switch between
walk, trot and gallop.

Or in birds, you can make a bird
switch between walking,

at a low level of stimulation,

and flapping its wings
at high-level stimulation.

And this really shows that the spinal cord

is a very sophisticated
locomotion controller.

So we studied salamander locomotion
in more detail,

and we had in fact access
to a very nice X-ray video machine

from Professor Martin Fischer
in Jena University in Germany.

And thanks to that,
you really have an amazing machine

to record all the bone motion
in great detail.

That’s what we did.

So we basically figured out
which bones are important for us

and collected their motion in 3D.

And what we did is collect
a whole database of motions,

both on ground and in water,

to really collect a whole database
of motor behaviors

that a real animal can do.

And then our job as roboticists
was to replicate that in our robot.

So we did a whole optimization process
to find out the right structure,

where to place the motors,
how to connect them together,

to be able to replay
these motions as well as possible.

And this is how Pleurobot came to life.

So let’s look at how close
it is to the real animal.

So what you see here
is almost a direct comparison

between the walking
of the real animal and the Pleurobot.

You can see that we have
almost a one-to-one exact replay

of the walking gait.

If you go backwards and slowly,
you see it even better.

But even better, we can do swimming.

So for that we have a dry suit
that we put all over the robot –

(Laughter)

and then we can go in water
and start replaying the swimming gaits.

And here, we were very happy,
because this is difficult to do.

The physics of interaction are complex.

Our robot is much bigger
than a small animal,

so we had to do what’s called
dynamic scaling of the frequencies

to make sure we had
the same interaction physics.

But you see at the end,
we have a very close match,

and we were very, very happy with this.

So let’s go to the spinal cord.

So here what we did
with Jean-Marie Cabelguen

is model the spinal cord circuits.

And what’s interesting
is that the salamander

has kept a very primitive circuit,

which is very similar
to the one we find in the lamprey,

this primitive eel-like fish,

and it looks like during evolution,

new neural oscillators
have been added to control the limbs,

to do the leg locomotion.

And we know where
these neural oscillators are

but what we did was to make
a mathematical model

to see how they should be coupled

to allow this transition
between the two very different gaits.

And we tested that on board of a robot.

And this is how it looks.

So what you see here
is a previous version of Pleurobot

that’s completely controlled
by our spinal cord model

programmed on board of the robot.

And the only thing we do

is send to the robot
through a remote control

the two descending signals
it normally should receive

from the upper part of the brain.

And what’s interesting is,
by playing with these signals,

we can completely control
speed, heading and type of gait.

For instance,

when we stimulate at a low level,
we have the walking gait,

and at some point, if we stimulate a lot,

very rapidly it switches
to the swimming gait.

And finally, we can also
do turning very nicely

by just stimulating more one side
of the spinal cord than the other.

And I think it’s really beautiful

how nature has distributed control

to really give a lot of responsibility
to the spinal cord

so that the upper part of the brain
doesn’t need to worry about every muscle.

It just has to worry
about this high-level modulation,

and it’s really the job of the spinal cord
to coordinate all the muscles.

So now let’s go to cat locomotion
and the importance of biomechanics.

So this is another project

where we studied cat biomechanics,

and we wanted to see how much
the morphology helps locomotion.

And we found three important
criteria in the properties,

basically, of the limbs.

The first one is that a cat limb

more or less looks
like a pantograph-like structure.

So a pantograph is a mechanical structure

which keeps the upper segment
and the lower segments always parallel.

So a simple geometrical system
that kind of coordinates a bit

the internal movement of the segments.

A second property of cat limbs
is that they are very lightweight.

Most of the muscles are in the trunk,

which is a good idea,
because then the limbs have low inertia

and can be moved very rapidly.

The last final important property is this
very elastic behavior of the cat limb,

so to handle impacts and forces.

And this is how we designed Cheetah-Cub.

So let’s invite Cheetah-Cub onstage.

So this is Peter Eckert,
who does his PhD on this robot,

and as you see, it’s a cute little robot.

It looks a bit like a toy,

but it was really used
as a scientific tool

to investigate these properties
of the legs of the cat.

So you see, it’s very compliant,
very lightweight,

and also very elastic,

so you can easily press it down
and it will not break.

It will just jump, in fact.

And this very elastic property
is also very important.

And you also see a bit these properties

of these three segments
of the leg as pantograph.

Now, what’s interesting
is that this quite dynamic gait

is obtained purely in open loop,

meaning no sensors,
no complex feedback loops.

And that’s interesting, because it means

that just the mechanics
already stabilized this quite rapid gait,

and that really good mechanics
already basically simplify locomotion.

To the extent that we can even
disturb a bit locomotion,

as you will see in the next video,

where we can for instance do some exercise
where we have the robot go down a step,

and the robot will not fall over,

which was a surprise for us.

This is a small perturbation.

I was expecting the robot
to immediately fall over,

because there are no sensors,
no fast feedback loop.

But no, just the mechanics
stabilized the gait,

and the robot doesn’t fall over.

Obviously, if you make the step bigger,
and if you have obstacles,

you need the full control loops
and reflexes and everything.

But what’s important here
is that just for small perturbation,

the mechanics are right.

And I think this is
a very important message

from biomechanics and robotics
to neuroscience,

saying don’t underestimate to what extent
the body already helps locomotion.

Now, how does this relate
to human locomotion?

Clearly, human locomotion is more complex
than cat and salamander locomotion,

but at the same time, the nervous system
of humans is very similar

to that of other vertebrates.

And especially the spinal cord

is also the key controller
for locomotion in humans.

That’s why, if there’s a lesion
of the spinal cord,

this has dramatic effects.

The person can become
paraplegic or tetraplegic.

This is because the brain
loses this communication

with the spinal cord.

Especially, it loses
this descending modulation

to initiate and modulate locomotion.

So a big goal of neuroprosthetics

is to be able to reactivate
that communication

using electrical or chemical stimulations.

And there are several teams
in the world that do exactly that,

especially at EPFL.

My colleagues Grégoire Courtine
and Silvestro Micera,

with whom I collaborate.

But to do this properly,
it’s very important to understand

how the spinal cord works,

how it interacts with the body,

and how the brain
communicates with the spinal cord.

This is where the robots
and models that I’ve presented today

will hopefully play a key role

towards these very important goals.

Thank you.

(Applause)

Bruno Giussani: Auke, I’ve seen
in your lab other robots

that do things like swim in pollution

and measure the pollution while they swim.

But for this one,

you mentioned in your talk,
like a side project,

search and rescue,

and it does have a camera on its nose.

Auke Ijspeert: Absolutely. So the robot –

We have some spin-off projects

where we would like to use the robots
to do search and rescue inspection,

so this robot is now seeing you.

And the big dream is to,
if you have a difficult situation

like a collapsed building
or a building that is flooded,

and this is very dangerous
for a rescue team or even rescue dogs,

why not send in a robot
that can crawl around, swim, walk,

with a camera onboard
to do inspection and identify survivors

and possibly create
a communication link with the survivor.

BG: Of course, assuming the survivors
don’t get scared by the shape of this.

AI: Yeah, we should probably
change the appearance quite a bit,

because here I guess a survivor
might die of a heart attack

just of being worried
that this would feed on you.

But by changing the appearance
and it making it more robust,

I’m sure we can make
a good tool out of it.

BG: Thank you very much.
Thank you and your team.

这是 Pleurobot。

Pleurobot 是一种机器人,我们设计它的目的是
为了模仿一种叫做 Pleurodeles waltl 的蝾螈物种

Pleurobot 可以走路,正如您在此处看到的那样,

并且正如您稍后将看到的,它也可以游泳。

所以你可能会问,
我们为什么要设计这个机器人?

事实上,这个机器人被设计
成神经科学的科学工具。

事实上,我们
与神经生物学家一起设计了它,

以了解动物如何移动

,尤其是脊髓如何
控制运动。

但我在生物机器人领域工作

的越多,我对
动物运动的印象就越深刻。

如果您想到游泳的海豚
或四处奔跑或跳跃的猫,

甚至我们作为人类,

当您慢跑或打网球时,

我们会做一些令人惊奇的事情。

事实上,我们的神经系统解决
了一个非常非常复杂的控制问题。

它必须
完美地协调或多或少的 200 块肌肉,

因为如果协调不好,
我们就会摔倒或运动不好。

我的目标是
了解这是如何工作的。 动物运动背后

有四个主要组成部分

第一个组成部分只是身体

,事实上我们永远不应低估

生物力学
已经在多大程度上简化了动物的运动。

然后你有脊髓

,在脊髓中你会发现反射,

多重反射

在脊髓中的神经活动
和机械活动之间形成一个感觉运动协调回路。

第三个组件
是中央模式生成器。

这些是脊椎动物脊髓中非常有趣的电路

,它们本身可以产生

非常协调
的活动节奏模式,

同时
只接收非常简单的输入信号。

这些

来自大脑更高部分的下行调制的输入信号,

如运动皮层
、小脑、基底神经节,

都会

在我们运动时调节脊髓的活动。

但有趣的是,
仅仅一个低层次的组成部分

,脊髓,连同身体,

在多大程度上已经解决了大部分
的运动问题。

你可能知道
,你可以把鸡的头砍下来,

它还能跑一会儿,

说明只是下半部分,
脊髓和身体,

已经解决了很大一部分运动。

现在,了解它是如何工作
的非常复杂,

因为首先,

记录脊髓中的活动
非常困难。

将电极
植入运动皮层

比植入脊髓容易得多,
因为它受到椎骨的保护。

尤其是人类,很难做到。

第二个困难是
运动实际上是由于这四个组件之间非常复杂

和非常动态的相互作用

因此,
随着时间的推移,很难找出每个角色的作用。

这就是像 Pleurobot 这样的生物机器人
和数学模型

可以真正提供帮助的地方。

那么什么是生物机器人?

Biorobotics 是一个非常活跃
的机器人研究领域

,人们希望
从动物

身上获得灵感,制作出户外活动的机器人,

比如服务机器人
或搜救机器人

或野外机器人。

这里最大的目标
是从动物身上汲取灵感

,制造出能够应对
复杂地形的机器人——

楼梯、山脉、森林、

机器人
仍然有困难

的地方,而动物
可以做得更好的地方。

机器人也可以是一个很棒的
科学工具。

有一些非常好的项目
使用了机器人,

例如神经科学、
生物力学或流体动力学的科学工具。

而这正是
Pleurobot 的目的。

因此,我们在我的实验室所做的
是与

法国波尔多的神经生物学家 Jean-Marie Cabelguen 等神经生物学家合作

,我们希望制作脊髓模型
并在机器人上进行验证。

在这里,我们想从简单开始。

所以最好从简单的动物开始,

比如七鳃鳗,它们是
非常原始的鱼,

然后逐渐
走向更复杂的运动,

比如蝾螈,

还有猫、人类

和哺乳动物。

在这里,机器人成为

验证我们模型的有趣工具。

事实上,对我来说,Pleurobot
是一种梦想成真。

就像,大约 20 年前,
我在攻读博士学位期间已经在使用

计算机模拟七鳃鳗
和蝾螈的运动

但我一直都知道我的
模拟只是近似值。

就像在水中
、泥浆或复杂地面中模拟物理一样,

很难
在计算机上正确模拟。

为什么不拥有一个真正的机器人
和真正的物理?

所以在所有这些动物中
,我最喜欢的动物之一是蝾螈。

你可能会问为什么
,这是因为作为一种两栖动物,从进化的角度来看,

它是一种非常关键的动物

它在鳗鱼或鱼中发现的游泳与

哺乳动物、猫和人类中的四足动物运动之间建立了奇妙的联系。

事实上,现代蝾

螈与第一个
陆生脊椎动物非常接近,

所以它几乎是活化石,

这让我们可以接触到我们

的祖先,所有陆生四足动物的祖先。

因此,蝾螈

以所谓
的鳗鱼式游泳步态游泳,

因此它们从头到尾传播了一种很好
的肌肉活动行波。

如果你
把蝾螈放在地上,

它就会变成所谓
的步行小跑步态。

在这种情况下,您的四肢有很好的
周期性激活,


身体的驻波波动非常协调

,这
正是您在 Pleurobot 上看到的步态。

现在,实际上非常令人惊讶
和令人着迷的一件事是

,所有这些都可以
仅由脊髓和身体产生。

所以如果你拿
一只去大脑的蝾螈——

它不是很好,
但你去掉了它的头

——如果你
对脊髓进行电刺激,

在低刺激水平下,
这将导致类似走路的步态。

如果你再刺激一点
,步态就会加快。

在某个时候,有一个阈值

,动物会自动切换到游泳状态。

这真太了不起了。

只需改变全局驱动,

就好像您正在踩下脊髓

下行调制的油门踏板

就可以
在两种截然不同的步态之间进行完全切换。

事实上,
在猫身上也观察到了同样的情况。

如果你刺激猫的脊髓,

你可以在
步行、小跑和疾驰之间切换。

或者在鸟类中,您可以让鸟类

在低刺激水平下行走和高水平刺激

下拍打翅膀
之间切换。

这确实表明脊髓

是一个非常复杂的
运动控制器。

所以我们更详细地研究了蝾螈的
运动,

事实上,我们从德国耶拿大学的 Martin Fischer 教授那里获得
了一台非常好的 X 射线视频机

多亏了这一点,
你才真正拥有了一台惊人的机器,

可以非常详细地记录所有骨骼
运动。

这就是我们所做的。

所以我们基本上弄清楚了
哪些骨骼对我们很重要,

并在 3D 中收集了它们的运动。

我们所做的是收集
一个完整的运动数据库,

包括地面和水中

,真正收集

一个真实动物可以做的运动行为的完整数据库。

然后我们作为机器人专家的工作
就是在我们的机器人中复制它。

因此,我们进行了整个优化过程,
以找出正确的结构、

电机的放置位置、
如何将它们连接在一起,

以便能够
尽可能好地重放这些动作。

这就是 Pleurobot 的诞生方式。

那么让我们看看
它与真实动物的接近程度。

所以你在这里看到
的几乎

是真实动物的行走与 Pleurobot 的直接对比。

您可以看到我们
几乎一对一地精确

重播了步行步态。

如果你向后慢慢走,
你会看得更清楚。

但更好的是,我们可以游泳。

所以为此我们有一套干式潜水服
,我们把它套在机器人身上——

(笑声)

然后我们可以进入水中
并开始重演游泳步态。

在这里,我们很高兴,
因为这很难做到。

相互作用的物理学是复杂的。

我们的机器人
比小动物大得多,

所以我们必须做所谓
的频率动态缩放,

以确保我们
拥有相同的交互物理。

但是你看最后,
我们的比赛非常接近

,我们对此非常非常满意。

所以让我们去脊髓。

所以在这里,我们
对 Jean-Marie Cabelguen 所做的

就是模拟脊髓回路。

有趣的
是,蝾螈

保留了一个非常原始的电路,


与我们在七鳃鳗中发现的非常相似,

这种原始的类似鳗鱼的鱼

,看起来在进化过程中,添加了

新的神经
振荡器来控制 四肢

,做腿部运动。

我们知道
这些神经振荡器在哪里,

但我们所做的是建立
一个数学模型

,看看它们应该如何耦合,

以允许
两种非常不同的步态之间的这种过渡。

我们在机器人上进行了测试。

这就是它的外观。

所以你在这里看到的
是以前版本的 Pleurobot

,它完全
由我们

在机器人上编程的脊髓模型控制。

我们唯一要做的

就是
通过遥控器向机器人

发送通常应该

从大脑上部接收到的两个下行信号。

有趣的是,
通过使用这些信号,

我们可以完全控制
速度、航向和步态类型。

例如,

当我们在低水平刺激时,
我们会采取步行步态,

并且在某些时候,如果我们刺激很多,

它会很快切换
到游泳步态。

最后,我们也可以

通过刺激
脊髓的一侧多于另一侧来很好地转动。

而且我认为

大自然如何分配控制

权,真正赋予脊髓很多责任

这样大脑的上半部分
就不需要担心每一块肌肉,这真是太棒了。

它只需要
担心这种高水平的调制,

而实际上是脊髓的工作
来协调所有的肌肉。

所以现在让我们来看看猫的运动
和生物力学的重要性。

所以这是

我们研究猫生物力学的另一个项目

,我们想看看
形态对运动有多大帮助。

我们在四肢的属性中发现了三个重要的
标准

第一个是猫的肢体

或多或少看起来
像受电弓状的结构。

因此,受电弓是

一种使上段
和下段始终保持平行的机械结构。

所以一个简单的几何
系统有点协调

线段的内部运动。

猫四肢的第二个特性
是它们非常轻。

大部分肌肉都在躯干,

这是个好主意,
因为那时四肢的惯性很小

,可以非常迅速地移动。

最后一个重要的属性
是猫肢体的这种非常有弹性的行为,

因此可以处理冲击和力。

这就是我们设计 Cheetah-Cub 的方式。

所以让我们邀请猎豹幼崽上台。

这是彼得·埃克特,
他在这个机器人上攻读博士学位

,正如你所见,它是一个可爱的小机器人。

它看起来有点像玩具,

但它确实被
用作

研究
猫腿这些特性的科学工具。

所以你看,它非常柔顺,
非常轻巧

,也非常有弹性,

所以你可以很容易地按下它
,它不会断裂。

事实上,它只会跳跃。

而这种非常有弹性的特性
也很重要。

您还可以看到腿部

这三个部分的这些属性
作为受电弓。

现在,有趣的
是,这种非常动态的步态

完全是在开环中获得的,

这意味着没有传感器,
没有复杂的反馈回路。

这很有趣,因为这

意味着只有机械师
已经稳定了这种相当快的步态,

而真正好的机械师
已经基本上简化了运动。

在某种程度上,我们甚至可以
干扰一点运动,

正如您将在下一个视频中看到的那样,

我们可以在其中做一些练习
,让机器人走下一步

,机器人不会摔倒,

这是一个 给我们惊喜。

这是一个小扰动。

我原以为机器人
会立即摔倒,

因为没有传感器,
没有快速反馈回路。

但是没有,只是机械师
稳定了步态

,机器人没有摔倒。

显然,如果你迈得更大
,如果你有障碍,

你需要完整的控制循环
和反射等等。

但这里重要的
是,对于小的扰动

,机制是正确的。

我认为这是

从生物力学和机器人
学到神经科学的一个非常重要的信息,

不要低估
身体已经在多大程度上帮助运动。

现在,这
与人类运动有什么关系?

显然,人类的运动
比猫和蝾螈的运动更复杂,

但同时,人类的神经系统与其他脊椎动物的神经系统
非常相似

尤其是脊髓

也是
人类运动的关键控制器。

这就是为什么,如果
有脊髓损伤,

这会产生巨大的影响。

该人可能会
截瘫或四肢瘫痪。

这是因为大脑
失去了

与脊髓的这种交流。

特别是,它失去了
这种下行调制

来启动和调制运动。

因此,神经假体的一个重要目标

是能够

使用电或化学刺激重新激活这种交流。

世界上有几支球队
正是这样做的,

尤其是在 EPFL。

我的同事 Grégoire Courtine
和 Silvestro Micera,

与我合作。

但要正确地做到这
一点,

了解脊髓如何工作、

它如何与身体相互作用

以及大脑如何
与脊髓交流是非常重要的。


就是我今天展示的机器人和模型

有望在

实现这些非常重要的目标方面发挥关键作用的地方。

谢谢你。

(掌声)

Bruno Giussani:Auke,我
在你的实验室看到了其他机器人

,它们可以在污染中游泳,

并在游泳时测量污染。

但是对于这个,

你在你的演讲中提到,
就像一个附带项目,

搜索和救援

,它的鼻子上确实有一个摄像头。

Auke Ijspeert:当然。 所以机器人——

我们有一些衍生项目

,我们想使用
机器人进行搜索和救援检查,

所以这个机器人现在正在和你见面。

最大的梦想是,
如果你遇到了

像倒塌的建筑物
或被淹的建筑物这样的困难情况

,这
对救援队甚至救援犬来说都是非常危险的,

为什么不派一个
可以爬行、游泳的机器人呢? ,走路,

带着
相机进行检查和识别幸存者,

并可能
与幸存者建立沟通联系。

BG:当然,假设幸存者
不会被它的形状吓到。

AI:是的,我们可能应该
稍微改变一下外观,

因为在这里我猜一个幸存者
可能会死于心脏病发作,

只是
担心这会以你为食。

但是通过改变外观
并使其更加健壮,

我相信我们可以用它制作
一个好的工具。

BG:非常感谢。
谢谢你和你的团队。