A brief history of numerical systems Alessandra King

One, two, three, four, five, six,
seven, eight, nine, and zero.

With just these ten symbols, we can
write any rational number imaginable.

But why these particular symbols?

Why ten of them?

And why do we arrange them the way we do?

Numbers have been a fact of life
throughout recorded history.

Early humans likely counted animals
in a flock or members in a tribe

using body parts or tally marks.

But as the complexity of life increased,
along with the number of things to count,

these methods were no longer sufficient.

So as they developed,

different civilizations came up
with ways of recording higher numbers.

Many of these systems,

like Greek,

Hebrew,

and Egyptian numerals,

were just extensions of tally marks

with new symbols added to represent
larger magnitudes of value.

Each symbol was repeated as many times
as necessary and all were added together.

Roman numerals added another twist.

If a numeral appeared before one
with a higher value,

it would be subtracted rather than added.

But even with this innovation,

it was still a cumbersome method
for writing large numbers.

The way to a more useful
and elegant system

lay in something called
positional notation.

Previous number systems needed to draw
many symbols repeatedly

and invent a new symbol
for each larger magnitude.

But a positional system could reuse
the same symbols,

assigning them different values
based on their position in the sequence.

Several civilizations developed positional
notation independently,

including the Babylonians,

the Ancient Chinese,

and the Aztecs.

By the 8th century, Indian mathematicians
had perfected such a system

and over the next several centuries,

Arab merchants, scholars, and conquerors
began to spread it into Europe.

This was a decimal, or base ten, system,

which could represent any number
using only ten unique glyphs.

The positions of these symbols
indicate different powers of ten,

starting on the right
and increasing as we move left.

For example, the number 316

reads as 6x10^0

plus 1x10^1

plus 3x10^2.

A key breakthrough of this system,

which was also independently
developed by the Mayans,

was the number zero.

Older positional notation systems
that lacked this symbol

would leave a blank in its place,

making it hard to distinguish
between 63 and 603,

or 12 and 120.

The understanding of zero as both
a value and a placeholder

made for reliable and consistent notation.

Of course, it’s possible
to use any ten symbols

to represent the numerals
zero through nine.

For a long time,
the glyphs varied regionally.

Most scholars agree
that our current digits

evolved from those used in the
North African Maghreb region

of the Arab Empire.

And by the 15th century, what we now know
as the Hindu-Arabic numeral system

had replaced Roman numerals
in everyday life

to become the most commonly
used number system in the world.

So why did the Hindu-Arabic system,
along with so many others,

use base ten?

The most likely answer is the simplest.

That also explains why the Aztecs used
a base 20, or vigesimal system.

But other bases are possible, too.

Babylonian numerals were sexigesimal,
or base 60.

Any many people think that a base 12,
or duodecimal system,

would be a good idea.

Like 60, 12 is a highly composite number
that can be divided by two,

three,

four,

and six,

making it much better for representing
common fractions.

In fact, both systems appear
in our everyday lives,

from how we measure degrees and time,

to common measurements,
like a dozen or a gross.

And, of course, the base two,
or binary system,

is used in all of our digital devices,

though programmers also use base eight
and base 16 for more compact notation.

So the next time you use a large number,

think of the massive quantity captured
in just these few symbols,

and see if you can come up
with a different way to represent it.

一、二、三、四、五、六、
七、八、九、零。

只需这十个符号,我们就可以
写出任何可以想象的有理数。

但为什么这些特殊符号?

为什么是十个?

为什么我们要按照我们的方式安排它们?

在有记载的历史中,数字一直是生活中的事实。

早期人类可能使用身体部位或计数标记来计算
羊群中的动物或部落中的成员

但是随着生活复杂性的增加,
以及要计算的事物的数量,

这些方法已经不够用了。

因此,随着它们的发展,

不同的文明
想出了记录更高数字的方法。

其中许多系统,

如希腊数字、

希伯来

数字和埃及数字

,只是计数标记的扩展,

添加了新符号以表示
更大的价值量级。

每个符号
根据需要重复多次,并将所有符号加在一起。

罗马数字增加了另一个转折。

如果一个数字出现在
具有更高值的数字之前,

它将被减去而不是添加。

但即使有了这项创新,

它仍然是一种
写大数的繁琐方法。

通往更有用
和更优雅的系统的方法

在于称为
位置符号的东西。

以前的数字系统需要
重复绘制许多符号


为每个较大的量级发明一个新符号。

但是位置系统可以
重用相同的符号,

根据它们在序列中的位置为它们分配不同的值。

几个文明独立发展了位置
符号,

包括巴比伦人

、古代中国

人和阿兹特克人。

到 8 世纪,印度数学家
已经完善了这样一个系统

,在接下来的几个世纪里,

阿拉伯商人、学者和征服者
开始将它传播到欧洲。

这是一个十进制或以十为底的系统,

它可以
仅使用十个独特的字形来表示任何数字。

这些符号的位置
表示十的不同幂,

从右边开始
,随着我们向左移动而增加。

例如,数字 316

读作 6x10^0

加上 1x10^1

加上 3x10^2。

这个同样由玛雅人自主开发的系统的一个关键突破

是数字零。 缺少此符号的

旧位置符号系统

会在其位置留下空白,

从而难以
区分 63 和 603,

或 12 和 120。

将零理解
为值和

占位符有助于实现可靠和一致的符号。

当然,
可以使用任意十个符号

来表示数字
0 到 9。

长期以来
,字形因地区而异。

大多数学者都同意
,我们目前的数字

是从阿拉伯帝国北非马格里布地区使用的数字演变而来的

到了 15 世纪,我们现在所知
的印度-阿拉伯数字系统

已经取代
了日常生活中的罗马数字,

成为世界上最常用的
数字系统。

那么为什么印度教-阿拉伯系统
以及许多其他系统都

使用十进制?

最可能的答案是最简单的。

这也解释了为什么阿兹特克人使用
以 20 为底的系统,即维吉斯系统。

但其他基地也是可能的。

巴比伦数字是六进制数字,
或以 60

为底。许多人认为以 12 为底
或十二进制

系统是个好主意。

与 60 一样,12 是一个高度合数
,可以被二、

三、

和六整除,

这使得它更适合表示
常见的分数。

事实上,这两种系统都出现
在我们的日常生活中,

从我们如何测量度数和时间,

到常见的测量值,
比如十几个或一个总量。

当然,

我们所有的数字设备都使用以 2 为基数或二进制系统,

尽管程序员也使用以 8
为基数和以 16 为基数的更紧凑的符号。

所以下次你使用一个大数字时,

想想这几个符号所捕捉到的巨大数量

,看看你是否能
想出一种不同的方式来表示它。