The operating system of life George Zaidan and Charles Morton

Every chicken was once an egg,

every oak tree an acorn,

every frog a tadpole.

The patch of mold on that old piece of bread

in the back of your fridge,

not so long ago that was one, solitary cell.

Even you were once but a gleam

in your parents' eyes.

All these organisms share

the same basic goal:

to perpetuate their own existence.

All lifeforms that we’ve discovered so far

stay alive by using

basically the same rules, materials, and machinery.

Imagine a factory full of robots.

These robots have two missions:

one, keep the factory running,

and two, when the time is right,

set up an entirely new factory.

To do those things,

they need assembly instructions,

raw materials,

plenty of energy,

a few rules about when to work normally,

when to work quickly,

or when to stop,

and some exchange currencies

because even robots need to get paid.

Each factory has a high security office with blueprints

for all the possible factory configurations

and complete sets of instructions

to make all the different types of robots

a factory could ever need.

Special robots photocopy these instructions

and send them off

to help make the building blocks of more robots.

Their colleagues assemble those parts

into still more robots,

which are transported

to the right location in the factory

and given the tools they need to start working.

Every robot draws energy

from the central power plant,

a giant furnace that can burn regular fuel

but also scrap materials

if not enough regular fuel is available.

Certain zones in the factory

have harsher working conditions,

so these areas are walled off.

But the robots inside can at least communicate

with the rest of the factory

through specialized portals

embedded directly into the walls.

And as you’ve probably figured out,

what we’re describing here

is a cell.

The high security office is the nucleus.

It stores the blueprints and instructions

as deoxyribonucleic acid, or DNA.

The photocopied instructions are RNA.

The robots themselves are mostly proteins

built from amino acids,

but they’ll often use special tools

that are, or are derived from,

vitamins and minerals.

The walls between factory zones

and around the factory itself

are mostly made up of lipids,

a.k.a. fats.

In most organisms,

the primary fuel source are sugars,

but in a pinch,

fats and proteins can be broken down

and burned in the furnace as well.

The portals are membrane proteins

which allow very specific materials and information

to pass through the walls at the right times.

Many interactions between robot proteins

require some kind of push,

think robot minimum wage.

A few small but crucial forms of money

are transferred between proteins

to provide this push.

Electrons, protons, oxygen, and phosphate groups

are the main chemical currencies,

and they’re kept in small molecular wallets

or larger tote bags to keep them safe.

This is biochemistry,

the study of how every part of the factory

interacts to keep your life running smoothly

in the face of extreme challenges.

Maybe there’s too much fuel;

your body will store the excess as glycogen or fat.

Maybe there’s not enough;

your body will use up those energy reserves.

Maybe a virus or bacteria tries to invade;

your body will mobilize the immune system.

Maybe you touched something hot or sharp;

your nerves will let you know so you can stop.

Maybe it’s time to create a new cell

or a new person.

Amazingly, oak trees, chickens, frogs,

and, yes, even you

share so many of the same

basic robot and factory designs

that biochemists can learn a lot

about all of them

all at the same time.

每只鸡都曾是鸡蛋,

每棵橡树都曾是橡子,

每只青蛙都曾是蝌蚪。 冰箱

后面那块旧面包上的霉斑,

不久前还是一个单独的牢房。

即使是你,也只是

你父母眼中的闪光。

所有这些有机体都有

一个共同的基本目标

:延续自己的存在。

到目前为止,我们发现的所有生命形式都

使用

基本相同的规则、材料和机械来维持生命。

想象一个充满机器人的工厂。

这些机器人有两个任务:

一是保持工厂运转

,二是在适当的时候

建立一个全新的工厂。

为了做这些事情,

他们需要组装说明、

原材料、

充足的能量

、一些关于何时正常工作、

何时快速工作

或何时停止的规则,

以及一些兑换货币,

因为即使是机器人也需要获得报酬。

每个工厂都有一个高度安全的办公室,其中

包含所有可能的工厂配置的蓝图

和完整的指令集,

以制造

工厂可能需要的所有不同类型的机器人。

特殊的机器人将这些指令复印

下来并发送出去,

以帮助制造更多机器人的积木。

他们的同事将这些部件组装

成更多的机器人,

这些机器人被运送

到工厂的正确位置,

并获得开始工作所需的工具。

每个机器人都

从中央发电厂获取能量,这

是一个巨大的熔炉,可以燃烧普通燃料

如果没有足够的普通燃料,也可以燃烧废料。

工厂中某些区域的

工作条件更为恶劣,

因此这些区域被围起来。

但内部的机器人至少可以通过直接嵌入墙壁的专用门户

与工厂的其他部分进行通信

您可能已经知道,

我们在这里描述的

是一个细胞。

高度安全的办公室是核心。

它将蓝图和指令存储

为脱氧核糖核酸或 DNA。

影印说明是RNA。

机器人本身主要是

由氨基酸制成的蛋白质,

但它们通常会使用特殊工具

,这些工具是或衍生自

维生素和矿物质。

工厂区之间

和工厂周围

的墙壁主要由脂质组成,也

就是脂肪。

在大多数生物体中

,主要的燃料来源是糖,

但在紧要关头,

脂肪和蛋白质也可以

在熔炉中分解和燃烧。

入口是膜蛋白

,它允许非常特定的材料和信息

在正确的时间穿过墙壁。

机器人蛋白质之间的许多相互作用

需要某种推动,

想想机器人的最低工资。

一些小而重要的货币形式

在蛋白质之间转移

以提供这种推动力。

电子、质子、氧和磷酸基团

是主要的化学货币

,它们被保存在小分子钱包

或较大的手提袋中以确保它们的安全。

这是生物化学

,研究工厂的每个部分如何

相互作用,以使您的生活

在面对极端挑战时顺利进行。

也许燃料太多了;

你的身体会将多余的糖原或脂肪储存起来。

也许还不够;

你的身体会消耗掉这些能量储备。

也许病毒或细菌试图入侵;

你的身体会调动免疫系统。

也许你触摸了热的或尖锐的东西;

你的神经会让你知道,所以你可以停下来。

也许是时候创建一个新细胞

或一个新人了。

令人惊讶的是,橡树、鸡、青蛙,

而且,是的,即使是你们

也有很多相同的

基本机器人和工厂设计

,生物化学家可以同时

了解所有这些