A beginners guide to quantum computing Shohini Ghose

Let’s play a game.

Imagine that you are in Las Vegas,

in a casino,

and you decide to play a game
on one of the casino’s computers,

just like you might play
solitaire or chess.

The computer can make moves
in the game, just like a human player.

This is a coin game.

It starts with a coin showing heads,

and the computer will play first.

It can choose to flip the coin or not,

but you don’t get to see the outcome.

Next, it’s your turn.

You can also choose
to flip the coin or not,

and your move will not be revealed
to your opponent, the computer.

Finally, the computer plays again,
and can flip the coin or not,

and after these three rounds,

the coin is revealed,

and if it is heads, the computer wins,

if it’s tails, you win.

So it’s a pretty simple game,

and if everybody plays honestly,
and the coin is fair,

then you have a 50 percent chance
of winning this game.

And to confirm that,

I asked my students to play
this game on our computers,

and after many, many tries,

their winning rate ended up
being 50 percent, or close to 50 percent,

as expected.

Sounds like a boring game, right?

But what if you could play this game
on a quantum computer?

Now, Las Vegas casinos
do not have quantum computers,

as far as I know,

but IBM has built
a working quantum computer.

Here it is.

But what is a quantum computer?

Well, quantum physics describes

the behavior of atoms
and fundamental particles,

like electrons and photons.

So a quantum computer operates

by controlling the behavior
of these particles,

but in a way that is completely different
from our regular computers.

So a quantum computer
is not just a more powerful version

of our current computers,

just like a light bulb
is not a more powerful candle.

You cannot build a light bulb
by building better and better candles.

A light bulb is a different technology,

based on deeper scientific understanding.

Similarly, a quantum computer
is a new kind of device,

based on the science of quantum physics,

and just like a light bulb
transformed society,

quantum computers
have the potential to impact

so many aspects of our lives,

including our security needs,
our health care and even the internet.

So companies all around the world
are working to build these devices,

and to see what
the excitement is all about,

let’s play our game on a quantum computer.

So I can log into IBM’s
quantum computer from right here,

which means I can play the game remotely,

and so can you.

To make this happen, you may remember
getting an email ahead of time, from TED,

asking you whether you would choose
to flip the coin or not,

if you played the game.

Well, actually, we asked you to choose
between a circle or a square.

You didn’t know it, but your choice
of circle meant “flip the coin,”

and your choice of square
was “don’t flip.”

We received 372 responses.

Thank you.

That means we can play 372 games
against the quantum computer

using your choices.

And it’s a pretty fast game to play,

so I can show you the results right here.

Unfortunately, you didn’t do very well.

(Laughter)

The quantum computer won
almost every game.

It lost a few only because
of operational errors in the computer.

(Laughter)

So how did it achieve
this amazing winning streak?

It seems like magic or cheating,

but actually, it’s just
quantum physics in action.

Here’s how it works.

A regular computer simulates
heads or tails of a coin as a bit,

a zero or a one,

or a current flipping on and off
inside your computer chip.

A quantum computer
is completely different.

A quantum bit has a more fluid,
nonbinary identity.

It can exist in a superposition,
or a combination of zero and one,

with some probability of being zero
and some probability of being one.

In other words,
its identity is on a spectrum.

For example, it could have
a 70 percent chance of being zero

and a 30 percent chance of being one

or 80-20 or 60-40.

The possibilities are endless.

The key idea here

is that we have to give up
on precise values of zero and one

and allow for some uncertainty.

So during the game,

the quantum computer creates
this fluid combination of heads and tails,

zero and one,

so that no matter what the player does,

flip or no flip,

the superposition remains intact.

It’s kind of like stirring
a mixture of two fluids.

Whether or not you stir,
the fluids remain in a mixture,

but in its final move,

the quantum computer
can unmix the zero and one,

perfectly recovering heads
so that you lose every time.

(Laughter)

If you think this is all a bit weird,
you are absolutely right.

Regular coins do not exist
in combinations of heads and tails.

We do not experience
this fluid quantum reality

in our everyday lives.

So if you are confused by quantum,

don’t worry, you’re getting it.

(Laughter)

But even though we don’t experience
quantum strangeness,

we can see its very real
effects in action.

You’ve seen the data for yourself.

The quantum computer won

because it harnessed
superposition and uncertainty,

and these quantum properties are powerful,

not just to win coin games,

but also to build
future quantum technologies.

So let me give you three examples
of potential applications

that could change our lives.

First of all, quantum uncertainty
could be used to create private keys

for encrypting messages
sent from one location to another

so that hackers could not
secretly copy the key perfectly,

because of quantum uncertainty.

They would have to break
the laws of quantum physics

to hack the key.

So this kind of unbreakable encryption
is already being tested by banks

and other institutions worldwide.

Today, we use more than 17 billion
connected devices globally.

Just imagine the impact quantum encryption
could have in the future.

Secondly, quantum technologies could also
transform health care and medicine.

For example, the design and analysis
of molecules for drug development

is a challenging problem today,

and that’s because
exactly describing and calculating

all of the quantum properties
of all the atoms in the molecule

is a computationally difficult task,
even for our supercomputers.

But a quantum computer could do better,

because it operates using
the same quantum properties

as the molecule it’s trying to simulate.

So future large-scale quantum
simulations for drug development

could perhaps lead to treatments
for diseases like Alzheimer’s,

which affects thousands of lives.

And thirdly, my favorite
quantum application

is teleportation of information
from one location to another

without physically transmitting
the information.

Sounds like sci-fi, but it is possible,

because these fluid identities
of the quantum particles

can get entangled across space and time

in such a way that when you change
something about one particle,

it can impact the other,

and that creates
a channel for teleportation.

It’s already been demonstrated
in research labs

and could be part
of a future quantum internet.

We don’t have such a network as yet,

but my team is working
on these possibilities,

by simulating a quantum network
on a quantum computer.

So we have designed and implemented
some interesting new protocols

such as teleportation
among different users in the network

and efficient data transmission

and even secure voting.

So it’s a lot of fun for me,
being a quantum physicist.

I highly recommend it.

(Laughter)

We get to be explorers
in a quantum wonderland.

Who knows what applications
we will discover next.

We must tread carefully and responsibly

as we build our quantum future.

And for me, personally,

I don’t see quantum physics as a tool
just to build quantum computers.

I see quantum computers as a way
for us to probe the mysteries of nature

and reveal more about this hidden world
outside of our experiences.

How amazing that we humans,

with our relatively limited
access to the universe,

can still see far beyond our horizons

just using our imagination
and our ingenuity.

And the universe rewards us

by showing us how incredibly
interesting and surprising it is.

The future is fundamentally uncertain,

and to me, that is certainly exciting.

Thank you.

(Applause)

来玩个游戏。

想象一下,您在拉斯维加斯

的赌场中

,您决定
在赌场的一台计算机上

玩游戏,就像您
玩纸牌或国际象棋一样。

计算机可以
在游戏中移动,就像人类玩家一样。

这是一个硬币游戏。

它以硬币显示正面开始

,计算机将首先播放。

它可以选择抛硬币或不抛硬币,

但你看不到结果。

接下来,轮到你了。

你也可以
选择抛硬币或不抛硬币

,你的动作不会透露
给你的对手,电脑。

最后电脑再玩一次
,可以抛硬币也可以不抛

,经过这三轮后

,硬币显露出来

,如果是正面,电脑就赢,

如果是反面,你就赢了。

所以这是一个非常简单的游戏

,如果每个人都诚实地玩
,硬币是公平的,

那么你有 50% 的
机会赢得这场游戏。

为了证实这一点,

我让我的学生
在我们的电脑上玩这个游戏

,经过多次尝试,

他们的获胜率最终达到了
50%,或者接近 50%,

正如预期的那样。

听起来很无聊的游戏,对吧?

但是如果你可以
在量子计算机上玩这个游戏呢?

现在,据我所知,拉斯维加斯的赌场
没有量子计算机

但 IBM 已经建造
了一台可以工作的量子计算机。

这里是。

但什么是量子计算机?

好吧,量子物理学描述

了原子
和基本粒子(

如电子和光子)的行为。

因此,量子计算机

通过控制
这些粒子的行为来运行,

但方式
与我们的常规计算机完全不同。

因此,量子
计算机不仅仅是

我们当前计算机的更强大版本,

就像灯泡
不是更强大的蜡烛一样。

你不能通过制造
越来越好的蜡烛来制造灯泡。

灯泡是一种不同的技术,

基于更深入的科学理解。

同样,量子计算机
是一种

基于量子物理学的新型设备

,就像灯泡
改变了社会一样,

量子计算机
有可能

影响我们生活的方方面面,

包括我们的安全需求、
我们的健康 关心甚至互联网。

因此,世界各地的公司
都在努力制造这些设备

,为了看看
令人兴奋的是什么,

让我们在量子计算机上玩我们的游戏。

所以我可以从这里登录IBM的
量子计算机,

这意味着我可以远程玩游戏,

你也可以。

为了实现这一点,你可能记得
提前收到一封来自 TED 的电子邮件,

询问你是否会
选择抛硬币,

如果你玩过这个游戏。

好吧,实际上,我们要求您
在圆形或方形之间进行选择。

你不知道,但你选择
的圆形意味着“掷硬币”,

而你选择的方形
是“不要翻转”。

我们收到了 372 份回复。

谢谢你。

这意味着我们可以

使用您的选择与量子计算机进行 372 场比赛。

这是一个非常快的游戏,

所以我可以在这里向你展示结果。

不幸的是,你做得不太好。

(笑声

) 量子计算机
几乎赢得了每一场比赛。

它丢失了一些只是因为
计算机中的操作错误。

(笑声)

那么它是如何取得
如此惊人的连胜纪录的呢?

这看起来像是魔术或作弊,

但实际上,这只是
量子物理学的作用。

这是它的工作原理。

普通计算机
将硬币的正面或反面模拟为位

、零或一,


计算机芯片内的电流翻转。

量子
计算机完全不同。

量子位具有更流动的、
非二进制的身份。

它可以以叠加的形式存在,
或者以零和一的组合存在,

有一定的概率是零
,也有一定的概率是一。

换句话说,
它的身份是在一个范围内。

例如,它可能
有 70% 的可能性为零

,有 30% 的可能性为 1

或 80-20 或 60-40。

可能性是无止境。

这里的关键思想

是我们必须放弃
零和一的精确值,

并允许一些不确定性。

所以在游戏过程中

,量子计算机创造了
这种头部和尾部、

零和一的流体组合,

这样无论玩家做什么,

翻转或不翻转

,叠加都保持不变。

这有点像
搅拌两种流体的混合物。

无论你是否搅拌
,流体都保持在混合物中,

但在最后一步

,量子计算机
可以将零和一分开,

完美地恢复头部,
让你每次都输掉。

(笑声)

如果你觉得这有点奇怪,那
你是完全正确的。

普通硬币不存在
正面和反面的组合。

我们在日常生活中不会体验到
这种流动的量子现实

所以如果你对量子感到困惑

,别担心,你明白了。

(笑声)

但是即使我们没有体验到
量子奇异性,

我们也可以看到它
在行动中的真实效果。

你已经看到了自己的数据。

量子计算机之所以获胜,

是因为它利用了
叠加和不确定性,

而这些量子特性非常强大,

不仅可以赢得硬币游戏,

还可以构建
未来的量子技术。

因此,让我举三个

可能改变我们生活的潜在应用示例。

首先,量子不确定性
可用于创建

用于加密
从一个位置发送到另一个位置的消息的私钥,

因此由于量子不确定性,黑客无法
完美地秘密复制密钥

他们必须
打破量子物理定律

才能破解密钥。

因此,这种牢不可破的
加密已经在

全球范围内的银行和其他机构中进行测试。

今天,我们在全球使用超过 170 亿台
联网设备。

想象一下量子加密
在未来可能产生的影响。

其次,量子技术还可以
改变医疗保健和医学。

例如,
用于药物开发的分子的设计和分析在

今天是一个具有挑战性的问题

,这是因为
准确描述和计算

分子中所有原子的所有量子特性

是一项计算困难的任务,
即使对于我们的超级计算机也是如此。

但是量子计算机可以做得更好,

因为它
使用与

它试图模拟的分子相同的量子特性来运行。

因此,未来
用于药物开发的大规模量子模拟

可能会导致
阿尔茨海默氏症等疾病的治疗,这种疾病

会影响数千人的生命。

第三,我最喜欢的
量子应用

是将信息
从一个位置传送到另一个位置,

而无需物理
传输信息。

听起来像科幻小说,但这是有可能的,

因为
量子粒子的这些流体特性

可以在空间和时间上纠缠在一起

,当你改变
一个粒子的某些东西时,

它会影响另一个粒子

,从而创建
一个通道 用于传送。

它已经
在研究实验室中得到证明,

并可能
成为未来量子互联网的一部分。

我们还没有这样的网络,

但我的团队正在
研究这些可能性,

通过
在量子计算机上模拟量子网络。

因此,我们设计并实现了
一些有趣的新协议,

例如
网络中不同用户之间的隐形传输

以及高效的数据传输

甚至安全投票。

因此,作为一名量子物理学家,这对我来说很有趣

我强烈推荐它。

(笑声)

我们将
成为量子仙境中的探险者。

谁知道
我们接下来会发现什么应用程序。

构建我们的量子未来时,我们必须谨慎且负责任地行事。

就我个人而言,

我不认为量子物理学
只是用于构建量子计算机的工具。

我认为量子计算机
是我们探索自然奥秘

并更多地揭示我们经验之外这个隐藏世界的一种方式

我们人类

在进入宇宙的途径相对有限的情况下,

仅凭我们的想象力和聪明才智,仍然可以看到远远超出我们视野的东西,

这真是太神奇
了。

宇宙

通过向我们展示
它是多么有趣和令人惊讶来奖励我们。

未来基本上是不确定的

,对我来说,这当然是令人兴奋的。

谢谢你。

(掌声)