A forgotten Space Age technology could change how we grow food Lisa Dyson

Imagine you are a part
of a crew of astronauts

traveling to Mars or some distant planet.

The travel time could take a year

or even longer.

The space on board and the resources

would be limited.

So you and the crew would have
to figure out how to produce food

with minimal inputs.

What if you could bring with you
just a few packets of seeds,

and grow crops in a matter of hours?

And what if those crops
would then make more seeds,

enabling you to feed the entire crew

with just those few packets of seeds
for the duration of the trip?

Well, the scientists at NASA actually
figured out a way to do this.

What they came up with
was actually quite interesting.

It involved microorganisms,

which are single-celled organisms.

And they also used hydrogen from water.

The types of microbes that they used
were called hydrogenotrophs,

and with these hydrogenotrophs,
you can create a virtuous carbon cycle

that would sustain life
onboard a spacecraft.

Astronauts would breathe out
carbon dioxide,

that carbon dioxide would then
be captured by the microbes

and converted into a nutritious,
carbon-rich crop.

The astronauts would then eat
that carbon-rich crop

and exhale the carbon out
in the form of carbon dioxide,

which would then be captured
by the microbes,

to create a nutritious crop,

which then would be exhaled
in the form of carbon dioxide

by the astronauts.

So in this way, a closed-loop
carbon cycle is created.

So why is this important?

We need carbon to survive as humans,

and we get our carbon from food.

On a long space journey,

you simply wouldn’t be able to pick up
any carbon along the way,

so you’d have to figure out
how to recycle it on board.

This is a clever solution, right?

But the thing is, that research
didn’t really go anywhere.

We haven’t yet gone to Mars.
We haven’t yet gone to another planet.

And this was actually done
in the ’60s and ’70s.

So a colleague of mine,
Dr. John Reed, and I,

were interested, actually,
in carbon recycling here on Earth.

We wanted to come up
with technical solutions

to address climate change.

And we discovered this research

by reading some papers published
in the ’60s – 1967 and later –

articles about this work.

And we thought it was a really good idea.

So we said, well, Earth
is actually like a spaceship.

We have limited space
and limited resources,

and on Earth, we really do
need to figure out

how to recycle our carbon better.

So we had the idea,

can we take some of these
NASA-type ideas and apply them

to our carbon problem here on Earth?

Could we cultivate
these NASA-type microbes

in order to make
valuable products here on Earth?

We started a company to do it.

And in that company, we discovered
that these hydrogenotrophs –

which I’ll actually call
nature’s supercharged carbon recyclers –

we found that they are a powerful
class of microbes

that had been largely overlooked
and understudied,

and that they could make
some really valuable products.

So we began cultivating these products,
these microbes, in our lab.

We found that we can make
essential amino acids from carbon dioxide

using these microbes.

And we even made a protein-rich meal

that has an amino acid profile
similar to what you might find

in some animal proteins.

We began cultivating them even further,

and we found that we can make oil.

Oils are used to manufacture
many products.

We made an oil that was similar
to a citrus oil,

which can be used for flavoring
and for fragrances,

but it also can be used
as a biodegradable cleaner

or even as a jet fuel.

And we made an oil
that’s similar to palm oil.

Palm oil is used to manufacture

a wide range of consumer
and industrial goods.

We began working with manufacturers
to scale up this technology,

and we’re currently working with them

to bring some of these products to market.

We believe this type of technology
can indeed help us

profitably recycle carbon dioxide
into valuable products –

something that’s beneficial
for the planet

but also beneficial for business.

That’s what we’re doing today.

But tomorrow, this type of technology
and using these types of microbes

actually could help us
do something even greater

if we take it to the next level.

We believe that this type of technology

can actually help us address
an issue with agriculture

and allow us to create
a type of agriculture that’s sustainable,

that will allow us to scale
to meet the demands of tomorrow.

And why might we need
a sustainable agriculture?

Well, actually, it is estimated

that the population will reach
about 10 billion by 2050,

and we’re projecting that we will need
to increase food production

by 70 percent.

In addition, we will need many more
resources and raw materials

to make consumer goods
and industrial goods.

So how will we scale to meet that demand?

Well, modern agriculture simply cannot
sustainably scale to meet that demand.

There are a number of reasons why.

One of them is that modern agriculture
is one of the largest emitters

of greenhouse gases.

In fact, it emits more greenhouse gases

than our cars, our trucks, our planes

and our trains combined.

Another reason is that modern ag
simply takes up a whole lot of land.

We have cleared 19.4 million square miles
for crops and livestock.

What does that look like?

Well, that’s roughly the size
of South America and Africa combined.

Let me give you a specific example.

In Indonesia, an amount
of virgin rainforest was cleared

totaling the size
of approximately Ireland,

between 2000 and 2012.

Just think of all
of the species, the diversity,

that was removed in the process,

whether plant life, insects
or animal life.

And a natural carbon sink
was also removed.

So let me make this real for you.

This clearing happened primarily
to make room for palm plantations.

And as I mentioned before,

palm oil is used
to manufacture many products.

In fact, it is estimated
that over 50 percent of consumer products

are manufactured using palm oil.

And that includes things
like ice cream, cookies …

It includes cooking oils.

It also includes detergents,
lotions, soaps.

You and I both
probably have numerous items

in our kitchens and our bathrooms

that were manufactured using palm oil.

So you and I are direct beneficiaries
of removed rainforests.

Modern ag has some problems,

and we need solutions
if we want to scale sustainably.

I believe that microbes
can be a part of the answer –

specifically, these supercharged
carbon recyclers.

These supercharged carbon recyclers,

like plants, serve as
the natural recyclers

in their ecosystems where they thrive.

And they thrive in exotic places on Earth,

like hydrothermal vents and hot springs.

In those ecosystems,
they take carbon and recycle it

into the nutrients needed
for those ecosystems.

And they’re rich in nutrients,

such as oils and proteins,
minerals and carbohydrates.

And actually, microbes are already
an integral part of our everyday lives.

If you enjoy a glass of pinot noir
on a Friday night,

after a long, hard work week,

then you are enjoying
a product of microbes.

If you enjoy a beer
from your local microbrewery –

a product of microbes.

Or bread, or cheese, or yogurt.

These are all products of microbes.

But the beauty and power associated
with these supercharged carbon recyclers

lies in the fact that they can
actually produce in a matter of hours

versus months.

That means we can make crops

much faster than we’re making them today.

They grow in the dark,

so they can grow in any season

and in any geography and any location.

They can grow in containers
that require minimal space.

And we can get to a type
of vertical agriculture.

Instead of our traditional
horizontal agriculture

that requires so much land,

we can scale vertically,

and as a result
produce much more product per area.

If we implement this type of approach
and use these carbon recyclers,

then we wouldn’t have to remove
any more rainforests

to make the food and the goods
that we consume.

Because, at a large scale,

you can actually make 10,000 times
more output per land area

than you could – for instance,
if you used soybeans –

if you planted soybeans
on that same area of land

over a period of a year.

Ten thousand times
over a period of a year.

So this is what I mean
by a new type of agriculture.

And this is what I mean
by developing a system

that allows us to sustainably scale
to meet the demands of 10 billion.

And what would be the products
of this new type of agriculture?

Well, we’ve already made a protein meal,

so you can imagine something
similar to a soybean meal,

or even cornmeal, or wheat flour.

We’ve already made oils,

so you can imagine something
similar to coconut oil

or olive oil or soybean oil.

So this type of crop can
actually produce the nutrients

that would give us pasta and bread,

cakes, nutritional items of many sorts.

Furthermore, since oil is used
to manufacture multiple other goods,

industrial products and consumer products,

you can imagine being able to make
detergents, soaps, lotions, etc.,

using these types of crops.

Not only are we running out of space,

but if we continue to operate
under the status quo

with modern agriculture,

we run the risk of robbing our progeny
of a beautiful planet.

But it doesn’t have to be this way.

We can imagine a future of abundance.

Let us create systems that keep
planet Earth, our spaceship,

not only from not crashing,

but let us also develop systems
and ways of living

that will be beneficial
to the lives of ourselves

and the 10 billion that will
be on this planet by 2050.

Thank you very much.

(Applause)

想象一下,您是

前往火星或某个遥远星球的宇航员的一员。

旅行时间可能需要一年

甚至更长的时间。

船上的空间和资源

将是有限的。

因此,您和工作人员
必须弄清楚如何

以最少的投入生产食物。

如果您可以随身
携带几包种子,

并在几个小时内种植农作物会怎样?

如果这些作物
能结出更多的种子,

让你在旅途中

只用那几包种子
就可以养活整个船员呢?

好吧,美国宇航局的科学家们实际上
想出了一种方法来做到这一点。

他们想出的东西
其实很有趣。

它涉及微生物,

它们是单细胞生物。

他们还使用了水中的氢气。

他们使用的微生物类型
被称为氢营养菌

,使用这些氢营养菌,
您可以创造一个良性的碳循环

,从而
维持航天器上的生命。

宇航员会呼出
二氧化碳

,然后二氧化碳会
被微生物捕获

并转化为营养丰富、
富含碳的作物。

然后,宇航员会
吃掉富含碳的作物,

并以
二氧化碳的形式呼出碳

,然后被微生物捕获

,形成一种营养丰富的作物

,然后由宇航员以
二氧化碳的形式呼出。

宇航员。

所以这样就形成了一个闭环的
碳循环。

那么为什么这很重要呢?

作为人类,我们需要碳才能生存,

而我们从食物中获取碳。

在漫长的太空旅行中,

你根本无法
在途中吸收任何碳,

所以你必须弄清楚
如何在船上回收它。

这是一个聪明的解决方案,对吧?

但问题是,这项研究
并没有真正走到任何地方。

我们还没有去火星。
我们还没有去另一个星球。

这实际上是
在 60 年代和 70 年代完成的。

所以我的同事
约翰·里德博士和我

实际上
对地球上的碳回收很感兴趣。

我们想提出

应对气候变化的技术解决方案。

我们

通过阅读
60 年代(1967 年及以后)

发表的一些关于这项工作的文章发现了这项研究。

我们认为这是一个非常好的主意。

所以我们说,好吧,
地球实际上就像一艘宇宙飞船。

我们的空间
和资源有限

,在地球上,我们确实
需要弄清楚

如何更好地回收我们的碳。

所以我们有了这个想法,

我们能不能把一些类似
NASA 的想法应用

到地球上的碳问题上?

我们能否培养
这些 NASA 型微生物

,以便
在地球上制造有价值的产品?

我们成立了一家公司来做这件事。

在那家公司里,我们
发现这些氢营养菌

——我实际上称之为
大自然的增压碳回收器——

我们发现它们是一
类强大的微生物

,在很大程度上被忽视
和研究不足

,它们可以制造
一些非常有价值的微生物 产品。

所以我们开始
在我们的实验室培养这些产品,这些微生物。

我们发现我们可以使用这些微生物
从二氧化碳中制造必需氨基酸

我们甚至制作了一种富含蛋白质的膳食

,其氨基酸组成
与您

在某些动物蛋白中可能发现的相似。

我们开始进一步培养它们

,我们发现我们可以制造石油。

油用于制造
许多产品。

我们制造了一种
类似于柑橘油的油,

可用于调味
和香料,

但它也
可用作可生物降解的清洁剂

,甚至可用作喷气燃料。

我们制造了一种
类似于棕榈油的油。

棕榈油用于

制造范围广泛的消费品
和工业产品。

我们开始与制造商合作
以扩大这项技术

,目前我们正在与他们

合作将其中一些产品推向市场。

我们相信这种技术
确实可以帮助我们

将二氧化碳回收
成有价值的产品——

这对地球

有益,对商业也有益。

这就是我们今天正在做的事情。

但是明天,如果我们把它提升到一个新的水平,这种技术
和使用这些类型的微生物

实际上可以帮助我们
做一些更大的事情

我们相信,这种技术

实际上可以帮助我们
解决农业问题

,让我们能够创造
一种可持续的农业,

这将使我们能够扩大规模
以满足未来的需求。

为什么我们
需要可持续农业?

嗯,实际上,估计


2050 年人口将达到 100 亿左右

,我们预计我们需要
将粮食产量

提高 70%。

此外,我们将需要更多的
资源和原材料

来制造消费品
和工业品。

那么我们将如何扩展以满足这种需求呢?

嗯,现代农业根本无法
可持续地扩大规模来满足这种需求。

原因有很多。

其中之一是现代农业
是温室气体的最大排放国

之一。

事实上,它排放的温室气体

比我们的汽车、卡车、飞机

和火车的总和还要多。

另一个原因是现代农业
只是占据了一大片土地。

我们已经清理了 1940 万平方英里
的农作物和牲畜。

那看起来像什么?

嗯,这大约
是南美洲和非洲的总和。

让我给你一个具体的例子。

在印度尼西亚,从 2000 年到 2012 年,
大量原始雨林被清除,


面积大约相当于爱尔兰

想想在这个过程中消除的
所有物种和多样性,

无论是植物生命、昆虫
还是动物生命。

并且
还去除了天然碳汇。

因此,让我为您实现这一点。

这次清理主要是
为棕榈种植园腾出空间。

正如我之前提到的,

棕榈油
用于制造许多产品。

事实上,据
估计超过 50% 的消费品

是使用棕榈油制造的。

这包括
冰淇淋、饼干之类的东西

……包括食用油。

它还包括洗涤剂、
乳液、肥皂。

你和我
可能

在我们的厨房和浴室

里都有许多使用棕榈油制造的物品。

所以你和我都是
热带雨林消失的直接受益者。

现代农业存在一些问题,

如果我们想要可持续地扩展,我们需要解决方案。

我相信微生物
可以成为答案的一部分——

特别是这些增压
碳回收器。

这些增压碳回收器,

就像植物一样,

在它们茁壮成长的生态系统中充当天然回收器。

它们在地球上异国情调的地方茁壮成长,

比如热液喷口和温泉。

在这些生态系统中,
它们吸收碳并将其循环

为这些生态系统所需的营养物质

它们富含营养物质,

如油和蛋白质、
矿物质和碳水化合物。

实际上,微生物已经
成为我们日常生活中不可或缺的一部分。

如果您在周五晚上享用一杯黑比诺

经过漫长而艰苦的一周工作,

那么您正在享用
微生物的产物。

如果您喜欢
当地小型啤酒厂的啤酒——

微生物的产物。

或者面包,或者奶酪,或者酸奶。

这些都是微生物的产物。


与这些增压碳回收器相关的美丽和力量

在于它们
实际上可以在几小时

而不是几个月内生产。

这意味着

我们可以比今天更快地生产农作物。

它们在黑暗中生长,

因此它们可以在任何季节

、任何地理和任何地点生长。

它们可以在
需要最小空间的容器中生长。

我们可以得到
一种垂直农业。

与需要大量土地的传统
横向农业不同

我们可以纵向扩展

,从而在
每个区域生产更多的产品。

如果我们实施这种方法
并使用这些碳回收器,

那么我们就不必再砍伐
任何热带雨林

来生产我们消费的食物和
商品。

因为,在大范围内,

你实际上
每块土地面积的产量是

你所能达到的 10,000 倍——例如,
如果你使用大豆——

如果你
在同一块土地

上种植大豆一年。

一年内一万次。

这就是我所说
的新型农业。

这就是我所说
的开发

一个允许我们可持续扩展
以满足 100 亿需求的系统的意思。

这种新型农业的产品会是什么

好吧,我们已经制作了蛋白质粉,

因此您可以想象
类似于豆粕,

甚至是玉米粉或小麦粉的东西。

我们已经制作了油,

因此您可以想象
类似于椰子油

、橄榄油或大豆油的东西。

所以这种作物
实际上可以产生营养,这些营养

可以为我们提供面食、面包、

蛋糕和多种营养食品。

此外,由于石油被
用于制造多种其他商品、

工业产品和消费品,

您可以想象能够使用这些类型的作物制造
洗涤剂、肥皂、乳液等

我们不仅空间不足,

而且如果我们继续

现代农业的现状下

运作,我们就有可能夺走我们的
后代美丽的星球。

但它不必是这样的。

我们可以想象一个富足的未来。

让我们创造系统来保护
地球,我们的宇宙飞船,

不仅不会坠毁,

而且让我们开发

对我们自己

和到
2050 年将在这个星球上的 100 亿人的生活有益的系统和生活方式。

非常感谢你。

(掌声)