Design at the Intersection of Technology and Biology Neri Oxman TED Talks

Two twin domes,

two radically opposed design cultures.

One is made of thousands of steel parts,

the other of a single silk thread.

One is synthetic, the other organic.

One is imposed on the environment,

the other creates it.

One is designed for nature,
the other is designed by her.

Michelangelo said that
when he looked at raw marble,

he saw a figure struggling to be free.

The chisel was Michelangelo’s only tool.

But living things are not chiseled.

They grow.

And in our smallest units of life,
our cells, we carry all the information

that’s required for every other cell
to function and to replicate.

Tools also have consequences.

At least since the Industrial Revolution,
the world of design has been dominated

by the rigors of manufacturing
and mass production.

Assembly lines have dictated
a world made of parts,

framing the imagination
of designers and architects

who have been trained to think
about their objects as assemblies

of discrete parts with distinct functions.

But you don’t find homogenous
material assemblies in nature.

Take human skin, for example.

Our facial skins are thin
with large pores.

Our back skins are thicker,
with small pores.

One acts mainly as filter,

the other mainly as barrier,

and yet it’s the same skin:
no parts, no assemblies.

It’s a system that gradually
varies its functionality

by varying elasticity.

So here this is a split screen
to represent my split world view,

the split personality of every designer
and architect operating today

between the chisel and the gene,

between machine and organism,
between assembly and growth,

between Henry Ford and Charles Darwin.

These two worldviews,
my left brain and right brain,

analysis and synthesis, will play out
on the two screens behind me.

My work, at its simplest level,

is about uniting these two worldviews,

moving away from assembly

and closer into growth.

You’re probably asking yourselves:

Why now?

Why was this not possible 10
or even five years ago?

We live in a very special time in history,

a rare time,

a time when the confluence of four fields
is giving designers access to tools

we’ve never had access to before.

These fields are computational design,

allowing us to design
complex forms with simple code;

additive manufacturing,
letting us produce parts

by adding material
rather than carving it out;

materials engineering, which lets us
design the behavior of materials

in high resolution;

and synthetic biology,

enabling us to design new biological
functionality by editing DNA.

And at the intersection
of these four fields,

my team and I create.

Please meet the minds and hands

of my students.

We design objects and products
and structures and tools across scales,

from the large-scale,

like this robotic arm
with an 80-foot diameter reach

with a vehicular base that will
one day soon print entire buildings,

to nanoscale graphics made entirely
of genetically engineered microorganisms

that glow in the dark.

Here we’ve reimagined the mashrabiya,

an archetype of ancient
Arabic architecture,

and created a screen where
every aperture is uniquely sized

to shape the form of light and heat
moving through it.

In our next project,

we explore the possibility
of creating a cape and skirt –

this was for a Paris fashion show
with Iris van Herpen –

like a second skin
that are made of a single part,

stiff at the contours,
flexible around the waist.

Together with my long-term
3D printing collaborator Stratasys,

we 3D-printed this cape and skirt
with no seams between the cells,

and I’ll show more objects like it.

This helmet combines
stiff and soft materials

in 20-micron resolution.

This is the resolution of a human hair.

It’s also the resolution of a CT scanner.

That designers have access

to such high-resolution
analytic and synthetic tools,

enables to design products that fit
not only the shape of our bodies,

but also the physiological
makeup of our tissues.

Next, we designed an acoustic chair,

a chair that would be at once
structural, comfortable

and would also absorb sound.

Professor Carter, my collaborator, and I
turned to nature for inspiration,

and by designing this irregular
surface pattern,

it becomes sound-absorbent.

We printed its surface
out of 44 different properties,

varying in rigidity, opacity and color,

corresponding to pressure points
on the human body.

Its surface, as in nature,
varies its functionality

not by adding another material
or another assembly,

but by continuously and delicately
varying material property.

But is nature ideal?

Are there no parts in nature?

I wasn’t raised
in a religious Jewish home,

but when I was young,

my grandmother used to tell me
stories from the Hebrew Bible,

and one of them stuck with me and came
to define much of what I care about.

As she recounts:

“On the third day of Creation,
God commands the Earth

to grow a fruit-bearing fruit tree.”

For this first fruit tree,
there was to be no differentiation

between trunk, branches,
leaves and fruit.

The whole tree was a fruit.

Instead, the land grew trees
that have bark and stems and flowers.

The land created a world made of parts.

I often ask myself,

“What would design be like
if objects were made of a single part?

Would we return to a better
state of creation?”

So we looked for that biblical material,

that fruit-bearing fruit tree
kind of material, and we found it.

The second-most abundant biopolymer
on the planet is called chitin,

and some 100 million tons of it
are produced every year

by organisms such as shrimps,
crabs, scorpions and butterflies.

We thought if we could tune
its properties,

we could generate structures
that are multifunctional

out of a single part.

So that’s what we did.

We called Legal Seafood –

(Laughter)

we ordered a bunch of shrimp shells,

we grinded them
and we produced chitosan paste.

By varying chemical concentrations,

we were able to achieve
a wide array of properties –

from dark, stiff and opaque,

to light, soft and transparent.

In order to print the structures
in large scale,

we built a robotically controlled
extrusion system with multiple nozzles.

The robot would vary
material properties on the fly

and create these 12-foot-long structures
made of a single material,

100 percent recyclable.

When the parts are ready,
they’re left to dry

and find a form naturally
upon contact with air.

So why are we still
designing with plastics?

The air bubbles that were a byproduct
of the printing process

were used to contain
photosynthetic microorganisms

that first appeared on our planet
3.5 billion year ago,

as we learned yesterday.

Together with our collaborators
at Harvard and MIT,

we embedded bacteria
that were genetically engineered

to rapidly capture carbon
from the atmosphere

and convert it into sugar.

For the first time,

we were able to generate structures
that would seamlessly transition

from beam to mesh,

and if scaled even larger, to windows.

A fruit-bearing fruit tree.

Working with an ancient material,

one of the first lifeforms on the planet,

plenty of water and a little bit
of synthetic biology,

we were able to transform a structure
made of shrimp shells

into an architecture
that behaves like a tree.

And here’s the best part:

for objects designed to biodegrade,

put them in the sea,
and they will nourish marine life;

place them in soil,
and they will help grow a tree.

The setting for our next exploration
using the same design principles

was the solar system.

We looked for the possibility
of creating life-sustaining clothing

for interplanetary voyages.

To do that, we needed to contain bacteria
and be able to control their flow.

So like the periodic table, we came up
with our own table of the elements:

new lifeforms that
were computationally grown,

additively manufactured

and biologically augmented.

I like to think of synthetic biology
as liquid alchemy,

only instead of transmuting
precious metals,

you’re synthesizing new biological
functionality inside very small channels.

It’s called microfluidics.

We 3D-printed our own channels
in order to control the flow

of these liquid bacterial cultures.

In our first piece of clothing,
we combined two microorganisms.

The first is cyanobacteria.

It lives in our oceans
and in freshwater ponds.

And the second, E. coli, the bacterium
that inhabits the human gut.

One converts light into sugar,
the other consumes that sugar

and produces biofuels
useful for the built environment.

Now, these two microorganisms
never interact in nature.

In fact, they never met each other.

They’ve been here,
engineered for the first time,

to have a relationship
inside a piece of clothing.

Think of it as evolution
not by natural selection,

but evolution by design.

In order to contain these relationships,

we’ve created a single channel
that resembles the digestive tract,

that will help flow these bacteria
and alter their function along the way.

We then started growing
these channels on the human body,

varying material properties
according to the desired functionality.

Where we wanted more photosynthesis,
we would design more transparent channels.

This wearable digestive system,
when it’s stretched end to end,

spans 60 meters.

This is half the length
of a football field,

and 10 times as long
as our small intestines.

And here it is for the first time
unveiled at TED –

our first photosynthetic wearable,

liquid channels glowing with life
inside a wearable clothing.

(Applause)

Thank you.

Mary Shelley said, “We are unfashioned
creatures, but only half made up.”

What if design could provide
that other half?

What if we could create structures
that would augment living matter?

What if we could create
personal microbiomes

that would scan our skins,
repair damaged tissue

and sustain our bodies?

Think of this as a form of edited biology.

This entire collection, Wanderers,
that was named after planets,

was not to me really about fashion per se,

but it provided an opportunity
to speculate about the future

of our race on our planet and beyond,

to combine scientific insight
with lots of mystery

and to move away
from the age of the machine

to a new age of symbiosis
between our bodies,

the microorganisms that we inhabit,

our products and even our buildings.

I call this material ecology.

To do this, we always need
to return back to nature.

By now, you know that a 3D printer
prints material in layers.

You also know that nature doesn’t.

It grows. It adds with sophistication.

This silkworm cocoon, for example,

creates a highly
sophisticated architecture,

a home inside which to metamorphisize.

No additive manufacturing today gets even
close to this level of sophistication.

It does so by combining not two materials,

but two proteins
in different concentrations.

One acts as the structure,
the other is the glue, or the matrix,

holding those fibers together.

And this happens across scales.

The silkworm first attaches itself
to the environment –

it creates a tensile structure –

and it then starts spinning
a compressive cocoon.

Tension and compression,
the two forces of life,

manifested in a single material.

In order to better understand
how this complex process works,

we glued a tiny earth magnet

to the head of a silkworm,
to the spinneret.

We placed it inside a box
with magnetic sensors,

and that allowed us to create
this 3-dimensional point cloud

and visualize the complex architecture
of the silkworm cocoon.

However, when we placed
the silkworm on a flat patch,

not inside a box,

we realized it would spin a flat cocoon

and it would still
healthily metamorphisize.

So we started designing different
environments, different scaffolds,

and we discovered that
the shape, the composition,

the structure of the cocoon, was directly
informed by the environment.

Silkworms are often boiled to death
inside their cocoons,

their silk unraveled and used
in the textile industry.

We realized that designing these templates
allowed us to give shape to raw silk

without boiling a single cocoon.

(Applause)

They would healthily metamorphisize,

and we would be able
to create these things.

So we scaled this process up
to architectural scale.

We had a robot spin
the template out of silk,

and we placed it on our site.

We knew silkworms migrated
toward darker and colder areas,

so we used a sun path diagram
to reveal the distribution

of light and heat on our structure.

We then created holes, or apertures,

that would lock in the rays
of light and heat,

distributing those silkworms
on the structure.

We were ready to receive the caterpillars.

We ordered 6,500 silkworms
from an online silk farm.

And after four weeks of feeding,
they were ready to spin with us.

We placed them carefully
at the bottom rim of the scaffold,

and as they spin they pupate,
they mate, they lay eggs,

and life begins all over again –
just like us but much, much shorter.

Bucky Fuller said that tension
is the great integrity,

and he was right.

As they spin biological silk
over robotically spun silk,

they give this entire
pavilion its integrity.

And over two to three weeks,

6,500 silkworms spin 6,500 kilometers.

In a curious symmetry, this is also
the length of the Silk Road.

The moths, after they hatch,
produce 1.5 million eggs.

This could be used for 250
additional pavilions for the future.

So here they are, the two worldviews.

One spins silk out of a robotic arm,

the other fills in the gaps.

If the final frontier of design
is to breathe life into the products

and the buildings around us,

to form a two-material ecology,

then designers must unite
these two worldviews.

Which brings us back, of course,
to the beginning.

Here’s to a new age of design,
a new age of creation,

that takes us from
a nature-inspired design

to a design-inspired nature,

and that demands of us for the first time

that we mother nature.

Thank you.

(Applause)

Thank you very much. Thank you.

(Applause)

两个双胞胎穹顶,

两种截然不同的设计文化。

一个由数千个钢部件制成

,另一个由一根丝线制成。

一种是合成的,另一种是有机的。

一个强加于环境

,另一个创造环境。

一个是为自然设计的
,另一个是她设计的。

米开朗基罗说,
当他看着原始大理石时,

他看到一个人影挣扎着想要自由。

凿子是米开朗基罗唯一的工具。

但生物不是雕刻出来的。

他们成长。

在我们最小的生命单位——
我们的细胞中,我们携带着

所有其他
细胞运作和复制所需的信息。

工具也有后果。

至少自工业革命以来
,设计界一直

被严格的制造
和大规模生产所主导。

装配线决定
了一个由零件组成的世界,

构筑
了设计师和建筑师的想象力,

他们接受过培训,
将他们的对象视为

具有不同功能的离散零件的组装。

但是您
在自然界中找不到同质材料组件。

以人体皮肤为例。

我们的面部皮肤很薄
,毛孔粗大。

我们的背部皮肤较厚
,毛孔较小。

一个主要用作过滤器

,另一个主要用作屏障

,但它是相同的皮肤:
没有零件,没有组件。

这是一个通过改变弹性逐渐
改变其功能的系统

所以这里是一个分屏
来代表我的分裂世界观,今天

每个设计师和建筑师的分裂人格,

在凿子和基因

之间,在机器和有机体
之间,在组装和生长

之间,在亨利福特和查尔斯达尔文之间。

这两种世界观,
我的左脑和右脑,

分析和综合,将
在我身后的两个屏幕上播放。

我的工作,在最简单的层面上,

是将这两种世界观结合起来,

远离组装

,更接近成长。

你可能会问自己:

为什么是现在?

为什么这在 10 年
甚至 5 年前是不可能的?

我们生活在历史上一个非常特殊的

时期,一个罕见的

时期,四个领域的融合
为设计师

提供了我们以前从未接触过的工具。

这些领域是计算设计,

允许我们
用简单的代码设计复杂的表格;

增材制造,
让我们

通过添加材料
而不是雕刻来生产零件;

材料工程,让我们能够以高分辨率
设计材料的行为

和合成生物学,

使我们能够通过编辑 DNA 来设计新的生物学
功能。


这四个领域的交汇处,

我和我的团队创造了。

请满足

我的学生的思想和双手。

我们设计
各种规模的物体、产品、结构和工具,

从大型的,

比如这个
直径为 80 英尺的机械臂,

有一个车辆底座,
有朝一日将很快打印整个建筑物,

到完全由基因工程制成的纳米级图形

在黑暗中发光的微生物。

在这里,我们重新构想了 mashrabiya,这

是一种古代
阿拉伯建筑的原型,

并创建了一个屏幕,其中
每个孔的大小都是独特的,

以塑造穿过它的光和热的形式

在我们的下一个项目中,

我们探索
创造斗篷和裙子的可能性——

这是与 Iris van Herpen 一起为巴黎时装秀设计的
——

就像第二层皮肤
,由单个部分组成,

轮廓僵硬,
周围灵活 腰部。

与我的长期
3D 打印合作伙伴 Stratasys 一起,

我们 3D 打印了这件斗篷和裙子
,细胞之间没有接缝

,我将展示更多类似的物品。

这款头盔结合了 20 微米分辨率的
硬质和软质材料

这是一根头发丝的分辨率。

它也是 CT 扫描仪的分辨率。

设计师可以

使用这种高分辨率的
分析和合成工具,从而

能够设计出
不仅适合我们身体的形状,

还适合
我们组织的生理构成的产品。

接下来,我们设计了一款吸音椅

,这款椅子既
结构合理,又舒适

,还能吸音。

我和我的合作者卡特教授
从大自然中寻找灵感

,通过设计这种不规则的
表面图案,

它变得吸音。

我们
用 44 种不同的属性打印了它的表面,这些属性的

硬度、不透明度和颜色各不相同,

对应
于人体上的压力点。

它的表面与自然界一样,

不是通过添加另一种材料
或另一种组件来改变其功能,

而是通过不断和微妙地
改变材料特性来改变其功能。

但自然是理想的吗?

自然界中没有部分吗?

我不是
在一个有宗教信仰的犹太家庭长大的,

但是当我年轻的时候,

我的祖母曾经给我
讲过希伯来圣经中的故事

,其中一位一直陪伴着我,并
开始定义我所关心的大部分内容。

正如她所说:

“在创造的第三天,
上帝命令

地球长出一棵结果子的果树。”

对于这第一棵果树,

树干、树枝、
叶子和果实之间没有区别。

整棵树都是果实。

取而代之的是,这片土地种植
了有树皮、茎和花的树木。

这片土地创造了一个由零件组成的世界。

我经常问自己,


如果物体是由一个部分组成的,设计会是什么样子

?我们会回到更好
的创造状态吗?”

所以我们寻找那种圣经材料,

那种结果子的果树
材料,我们找到了。

地球上第二丰富的生物聚合物
称为甲壳素,

虾、
蟹、蝎子和蝴蝶等生物每年生产约 1 亿吨甲壳素。

我们认为,如果我们可以调整
它的属性,

我们就可以

从单个部件中生成多功能结构。

这就是我们所做的。

我们叫Legal Seafood——

(笑声)

我们点了一堆虾壳,

我们把它们磨碎,
然后我们生产壳聚糖糊。

通过改变化学浓度,

我们能够
获得广泛的特性——

从黑暗、僵硬和不透明,

到轻盈、柔软和透明。

为了大规模打印结构

我们构建了一个
带有多个喷嘴的机器人控制挤出系统。

该机器人将
在飞行中改变材料特性,

并创建这些
由单一材料制成的 12 英尺长的结构,

100% 可回收。

当零件准备好时,
它们会被晾干,


在与空气接触后自然形成形状。

那么为什么我们仍然
使用塑料进行设计呢? 正如我们昨天了解到的,作为打印过程

的副产品的气泡

被用来容纳 35 亿年前

首次出现在我们星球上的光合微生物

我们与
哈佛和麻省理工学院的合作者一起

,嵌入
了经过基因工程改造的细菌,

可快速
从大气中捕获碳

并将其转化为糖。

我们第一次

能够生成

从梁到网格无缝过渡的结构

,如果缩放得更大,到窗户。

一棵结果实的果树。

使用一种古老的材料,

地球上最早的生命形式之一,

大量的水和
一点合成生物学,

我们能够
将由虾壳

制成的结构转变
为像树一样的建筑。

这是最好的部分:

对于设计用于生物降解的物体,

将它们放入海中
,它们将滋养海洋生物;

将它们放在土壤中
,它们将有助于种植一棵树。

我们
使用相同设计原则进行下一次探索的背景

是太阳系。

我们寻找为星际航行
创造维持生命的服装的可能性

为此,我们需要控制细菌
并能够控制它们的流动。

因此,就像元素周期表一样,我们提出
了我们自己的元素表

:计算生长、

增材制造和生物增强的新生命形式。

我喜欢将合成生物学
视为液体炼金术,

只不过不是转化
贵金属,

而是
在非常小的通道内合成新的生物功能。

它被称为微流体。

我们 3D 打印了我们自己的通道
,以控制

这些液体细菌培养物的流动。

在我们的第一件衣服中,
我们结合了两种微生物。

首先是蓝藻。

它生活在我们的海洋
和淡水池塘中。

第二种是大肠杆菌,
一种栖息在人类肠道中的细菌。

一个将光转化为糖
,另一个消耗糖

并生产
对建筑环境有用的生物燃料。

现在,这两种微生物
在自然界中从未相互作用。

事实上,他们从未见过面。

他们来到这里,
第一次设计,

在一件衣服里建立关系。

把它想象成
不是自然选择的

进化,而是设计的进化。

为了控制这些关系,

我们创建了一个类似于消化道的单一通道

这将有助于这些细菌流动
并在此过程中改变它们的功能。

然后我们开始
在人体上培养这些通道,

根据所需的功能改变材料特性。

在我们想要更多光合作用的地方,
我们会设计更透明的通道。

这个可穿戴的消化系统,
当它首尾相连时,

跨越 60 米。


是一个足球场的一半长度,

是我们小肠的10倍。


在 TED 上首次亮相——

我们的第一个光合作用可穿戴

液体通道,
在可穿戴衣服中散发出生命的光芒。

(掌声)

谢谢。

玛丽雪莱说:“我们是不合时宜的
生物,但只有一半。”

如果设计可以
提供另一半呢?

如果我们能创造
出能增加生命物质的结构会怎样?

如果我们可以创建
个人微生物

组来扫描我们的皮肤、
修复受损组织

并维持我们的身体会怎样?

将其视为编辑生物学的一种形式。 以行星命名

的整个系列,Wanderers,

对我来说并不是真正的时尚本身,

但它提供了一个机会
来推测

我们这个星球及其他地方的种族未来

,将科学洞察力
与许多神秘


摆脱机器时代,进入

我们的身体

、我们居住的微生物、

我们的产品甚至我们的建筑之间共生的新时代。

我称之为物质生态。

为此,我们总是
需要回归自然。

到目前为止,您已经知道 3D 打印机
可以分层打印材料。

你也知道大自然不会。

它长大了。 它增加了复杂性。

例如,这个蚕茧

创造了一个高度
复杂的建筑,

一个可以在里面变质的家。

如今,没有任何增材制造
能够达到这种复杂程度。

它通过组合不是两种材料,

而是两种
不同浓度的蛋白质来做到这一点。

一种充当结构
,另一种是胶水或基质,

将这些纤维固定在一起。

这发生在不同的尺度上。

蚕首先将自身
附着在环境中——

它产生了一个拉伸结构——

然后它开始旋转
一个压缩的茧。

张力和压缩,
生命的两种力量,

体现在单一材料中。

为了更好地
了解这一复杂过程的工作原理,

我们将一块微小的地球磁铁粘

在蚕的头部和
喷丝头上。

我们把它放在一个
带有磁传感器的盒子里

,这样我们就可以创建
这个 3 维点云

并可视化蚕茧的复杂结构

然而,当我们
把蚕放在一块平坦的地方,

而不是放在盒子里时,

我们意识到它会吐出一个扁平的茧,

而且它仍然会
健康地变质。

所以我们开始设计不同的
环境,不同的脚手架

,我们发现茧
的形状、成分

和结构,都是直接
受环境影响的。

蚕经常
在茧内被煮死,

它们的丝被解开并
用于纺织工业。

我们意识到,设计这些模板
可以让我们在

不煮蚕茧的情况下为生丝赋予形状。

(鼓掌)

它们会健康地变形

,我们
就能创造出这些东西。

所以我们将这个过程扩大
到建筑规模。

我们让一个机器人
用丝绸旋转模板,

然后我们把它放在我们的网站上。

我们知道蚕会迁移
到较暗和较冷的区域,

因此我们使用太阳路径图
来揭示

我们结构上的光和热分布。

然后,我们创建

了可以锁定
光线和热量的孔或孔,将

这些蚕分布
在结构上。

我们准备好接收毛毛虫了。

我们从网上丝绸农场订购了 6,500 只蚕

经过四个星期的喂食,
它们已经准备好和我们一起旋转了。

我们小心翼翼地将它们放在
脚手架的底部边缘

,当它们旋转时,它们会化蛹、
交配、产卵

,生活重新开始——
就像我们一样,但时间要短得多。

巴基富勒说,紧张
是最大的诚信

,他是对的。

当他们
在机器人纺丝上旋转生物丝时,

他们为整个
展馆赋予了完整性。

在两到三周的时间里,

6,500 只蚕旋转了 6,500 公里。

奇怪的是,这也是
丝绸之路的长度。

飞蛾孵化后可
产 150 万个卵。

这可用于未来 250 个
额外的展馆。

所以他们在这里,两种世界观。

一个从机械臂中纺出丝绸

,另一个填补空隙。

如果设计的最终前沿
是为产品

和我们周围的建筑注入生命

,形成一种双材料生态,

那么设计师就必须
将这两种世界观统一起来。

当然,这让我们
回到了开始。

这是设计
的新时代,创造的新时代

,它将我们从
受自然启发的设计

带入受设计启发的自然

,这是我们第一次要求我们成为

自然之母。

谢谢你。

(掌声)

非常感谢。 谢谢你。

(掌声)