Einsteins brilliant mistake Entangled states Chad Orzel

Albert Einstein played a key role
in launching quantum mechanics

through his theory of the
photoelectric effect

but remained deeply bothered by its
philosophical implications.

And though most of us still remember
him for deriving E=MC^2,

his last great contribution to physics
was actually a 1935 paper,

coauthored with his young colleagues
Boris Podolsky and Nathan Rosen.

Regarded as an odd philosophical
footnote well into the 1980s,

this EPR paper has recently become central
to a new understanding of quantum physics,

with its description
of a strange phenomenon

now known as entangled states.

The paper begins by considering a
source that spits out pairs of particles,

each with two measurable properties.

Each of these measurements has
two possible results

of equal probability.

Let’s say zero or one
for the first property,

and A or B for the second.

Once a measurement is performed,

subsequent measurements of the same
property in the same particle

will yield the same result.

The strange implication of this scenario

is not only that the state
of a single particle

is indeterminate until it’s measured,

but that the measurement then
determines the state.

What’s more, the measurements
affect each other.

If you measure a particle
as being in state 1,

and follow it up with the second
type of measurement,

you’ll have a 50% chance of
getting either A or B,

but if you then repeat
the first measurement,

you’ll have a a 50% chance of getting zero

even though the particle had already
been measured at one.

So switching the property being measured
scrambles the original result,

allowing for a new, random value.

Things get even stranger when you
look at both particles.

Each of the particles will produce
random results,

but if you compare the two,

you will find that they are
always perfectly correlated.

For example, if both particles
are measured at zero,

the relationship will always hold.

The states of the two are entangled.

Measuring one will tell you the other
with absolute certainty.

But this entanglement seems to defy
Einstein’s famous theory of relativity

because there is nothing to limit the
distance between particles.

If you measure one in New York at noon,

and the other in San Francisco
a nanosecond later,

they still give exactly the same result.

But if the measurement
does determine the value,

then this would require one particle
sending some sort of signal to the other

at 13,000,000 times the speed of light,

which according to relativity,
is impossible.

For this reason, Einstein dismissed
entanglement as “spuckafte ferwirklung,”

or spooky action at a distance.

He decided that quantum mechanics
must be incomplete,

a mere approximation of a deeper reality
in which both particles

have predetermined states that
are hidden from us.

Supporters of orthodox quantum theory
lead by Niels Bohr

maintained that quantum states
really are fundamentally indeterminate,

and entanglement allows
the state of one particle

to depend on that of its distant partner.

For 30 years, physics remained
at an impasse,

until John Bell figured out that the key
to testing the EPR argument

was to look at cases involving different
measurements on the two particles.

The local hidden variable theories
favored by Einstein, Podolsky and Rosen,

strictly limited how often you could
get results like 1A or B0

because the outcomes would have to be
defined in advanced.

Bell showed that the purely
quantum approach,

where the state is truly
indeterminate until measured,

has different limits
and predicts mixed measurement results

that are impossible in the
predetermined scenario.

Once Bell had worked out how to test
the EPR argument,

physicists went out and did it.

Beginning with John Clauster in the 70s
and Alain Aspect in the early 80s,

dozens of experiments have tested
the EPR prediction,

and all have found the same thing:

quantum mechanics is correct.

The correlations between the indeterminate
states of entangled particles are real

and cannot be explained by any
deeper variable.

The EPR paper turned out to be wrong
but brilliantly so.

By leading physicists to think deeply
about the foundations of quantum physics,

it led to further elaboration
of the theory

and helped launch research into
subjects like quantum information,

now a thriving field with the potential to
develop computers of unparalleled power.

Unfortunately, the randomness of
the measured results

prevents science fiction scenarios,

like using entangled particles
to send messages faster than light.

So relativity is safe, for now.

But the quantum universe is far stranger
than Einstein wanted to believe.

阿尔伯特爱因斯坦通过他的光电效应理论在启动量子力学方面发挥了关键作用

但仍对其
哲学含义深感困扰。

尽管我们大多数人仍然记得
他推导出 E=MC^2,但

他对物理学的最后一项重大贡献
实际上是 1935 年

与他的年轻同事
Boris Podolsky 和 Nathan Rosen 合着的一篇论文。 直到 1980 年代,这篇

EPR 论文被认为是一个奇怪的哲学
脚注,

它最近成为
了对量子物理学新理解的核心

,它描述
了一种

现在被称为纠缠态的奇怪现象。

这篇论文首先考虑了一个
会吐出成对粒子的源,

每个粒子都有两个可测量的属性。

这些测量中的每一个都有
两个

等概率的可能结果。

假设
第一个属性为零或一个,第二个

属性为 A 或 B。

一旦执行了测量

,对同一粒子的相同属性的后续测量

将产生相同的结果。

这种情况的奇怪含义

不仅
在于单个粒子的状态在

被测量之前是不确定的,

而且测量结果
决定了状态。

更重要的是,测量结果
会相互影响。

如果你测量一个
粒子处于状态 1,

然后用
第二种测量方式跟进,

你将有 50% 的机会
得到 A 或 B,

但如果你重复
第一次测量,

你将有

即使粒子已经
被测量为 1,也有 50% 的机会得到 0。

因此,切换被测量的属性会
扰乱原始结果,

从而允许新的随机值。

当你看到这两个粒子时,事情变得更加奇怪

每个粒子都会产生
随机的结果,

但如果你比较两者,

你会发现它们
总是完全相关的。

例如,如果两个粒子
的测量值都为零,则

该关系将始终成立。

两人的状态纠缠不清。

测量一个会
绝对确定地告诉你另一个。

但这种纠缠似乎违背了
爱因斯坦著名的相对论,

因为没有什么可以限制
粒子之间的距离。

如果你中午在纽约测量一个,

一纳秒后在旧金山测量另一个,

它们仍然给出完全相同的结果。

但是,如果测量
确实确定了该值,

那么这将需要一个粒子以 13,000,000 倍光速
向另一个粒子发送某种信号

,根据相对论,这
是不可能的。

出于这个原因,爱因斯坦将
纠缠斥为“spuckafte ferwirklung”

或远处的幽灵行动。

他认为量子力学
一定是不完整的

,仅仅是对更深层次现实的近似,
在这个现实中,两个粒子

都具有
对我们隐藏的预定状态。 由尼尔斯·玻尔领导

的正统量子理论的支持者

坚持认为,量子态
从根本上说是不确定的,

而纠缠允许
一个粒子的状态

依赖于其遥远伙伴的状态。

30 年来,物理学一直
处于僵局,

直到约翰·贝尔发现检验 EPR 论点的关键

是研究涉及
对两个粒子进行不同测量的案例。

爱因斯坦、波多尔斯基和罗森所支持的局部隐变量理论

严格限制了您
获得 1A 或 B0 等结果的频率,

因为必须
提前定义结果。

贝尔表明,在被测量之前状态真正不确定的纯
量子方法

具有不同的限制,
并预测

了在预定场景中不可能的混合测量结果

贝尔研究出如何
测试 EPR 论证后,

物理学家就开始着手去做了。

从 70 年代的 John Clauster
和 80 年代初的 Alain Aspect 开始,

数十次实验测试
了 EPR 预测,

并且都发现了相同的东西:

量子力学是正确的。 纠缠粒子

的不确定状态之间的相关性
是真实的

,无法用任何
更深层次的变量来解释。

EPR 论文被证明是错误的,
但非常出色。

通过引导物理学家深入
思考量子物理学的基础,

它导致
了对理论的进一步阐述,

并帮助启动了对
量子信息等学科的研究,量子信息

现在是一个蓬勃发展的领域,有可能
开发出无与伦比的计算机。

不幸的是,
测量结果的随机性

阻止了科幻场景,

例如使用纠缠粒子
以比光更快的速度发送信息。

所以现在相对论是安全的。

但量子宇宙
远比爱因斯坦想相信的要陌生。