FastTracking Climate Progress With New Science and Technology

Transcriber: Amanda Zhu
Reviewer: Peter Van de Ven

Hello everyone.

Thank you very much for tuning in
to our TEDx Countdown event.

I’m Marc Schaus.

And I’m taking part in Countdown

because while you’ve probably heard
a lot about climate change

by now

and all the trouble that we’re in
trying to deal with it at this point,

there’s a solid chance
that you haven’t yet heard

about another side
of the climate conversation

that is equally crucial in trying
to get more people to talk about,

and that’s the side of the conversation

in which we actually talk about
what we’re going to do here

to solve the climate crisis.

So, my daily work involves

combing through new academic publications
coming in from all around the world

in about a dozen different
scientific fields,

literally every day,
every month of the year.

And what the bird’s eye view of all that
new incoming scientific data looks like,

especially pertinent to climate change,

is, yeah, there’s a lot of bad news
that we could be talking about here,

but there’s also a lot of good news
that we could be talking about

in terms of human progress
towards various climate solutions;

moreover, that that progress
has actually been picking up pace,

over the last several years especially.

Because as more nations

have come to recognize climate change
as the existential threat that it is

and more scientists
have dedicated themselves

to the various tasks we need
to overcome to solve this problem,

the trickle pace
of new scientific innovations

that we’ve been seeing
for clean energy over the years

has picked up pace considerably now,
leading into the present.

And what that looks like, that progress,

is in new scientific innovations,
new technological upgrades,

that are allowing us to transition
away from fossil fuel energy sources,

more towards clean energy sources
to cut our carbon emissions.

And so while cleaning up our energy sector
is not everything with this problem,

it is a huge part of it;

and the good news is

that new progress has been coming in
for all of our clean energy options

all across the board,

anywhere from the staples of clean energy,

like solar and wind,

to 24/7 continuous forms
of renewable energy

that fewer of us tend to talk about,

like geothermal energy and tidal energy,

and other clean energy sources,
like nuclear energy and hydrogen fuel,

and advancements in new biofuels as well.

There have been
so many dramatic new innovations

in clean energy technologies
over the last several years

that I can realistically only give you
a highlights montage

in the amount of time that I have here

to really try and do any of them justice.

So if you’re ready for that …

Consider solar energy specifically.

Solar cell technology

has been improved so dramatically
and fallen so steeply in cost

that some analysts expect humanity

to be producing tens of thousands
of new solar panels per hour

over at least the next half decade,

and that because scientists or engineers

have managed to improve everything

from solar cells being
more powerful, more efficient,

more durable, longer lasting,

and, especially, cheaper,

developing communities
all around the world

can much more readily
access this technology,

even in place of a new fossil fuel
energy plant driving the demand further.

So I mean, those kinds of things,

making technology better and cheaper,

is really what will spur more people
into wanting to use it

rather than just immoralizing
people into using it.

So I mean, even more recently,

scientists have managed
to create transparent solar cells

that could be placed
in glass greenhouse rooftops

and integrated into
the windows of your home

or all along the window sides
of skyscrapers in our cities,

or we even have some engineers
developing solar canopies

to line select highway roads.

And other new innovations -

we even have new solar panels now
that not only allow homeowners

to harvest renewable energy
for their homes off the grid,

but they also gather the moisture
in the surrounding air

to collect clean drinking water
for your home at the same time.

And the company developing those panels

has now even partnered
with remote communities

in water scarce parts of the world

to try and bring them more clean energy
and more clean drinking water

at the same time.

And those are exactly, again,

the kinds of innovations
that you would want to see

in terms of spurring
more use of this technology.

Or how about new indoor solar cells

that harvest lower levels
of indoor ambient light

to power microelectronics and, you know,
room sensors and thermostats

and even security systems.

Or how about whole new locations

for placing our solar cells,
like on floating, buoyant solar pads

that rest atop, you know,
bodies of water -

so-called “floatovoltaics” -

that can rest on lakes and reservoirs
or, you know, on top of running rivers,

that are also supplying
hydroelectric energy at the same time,

or, of course, all along shorelines
in parts of the world

where, you know, spare land
is in short supply,

where you get the added benefit
of cool operating temperatures -

you know, raising cell efficiency levels

and the massive added benefit

of not needing to go
and demo huge swaths of land first

to make way for
your massive new solar farm.

Or how about new
so-called anti-solar panels

that take advantage of the fact

that the sun’s rays
hit the Earth’s surfaces

and a sizable portion of that energy
just gets absorbed as thermal energy -

hot sunny day, hot surfaces -

and that slowly, over time,
it dissipates back into space.

Anti-solar panels
capture some of that heat energy

on its reverse passage
back out into space.

Now, obviously,

it’s not a monumental amount
of energy at that point,

but a new study cites
getting about 25 percent

of what you would get
from your traditional solar cell,

which, I mean, is a marked improvement
over the zero percent of energy

we’re harvesting overnight
from our rooftop panels right now.

Now, obviously,

we could do more with sunlight

than just rooftop panels
and transparent energy harvesters.

We can also look to nature

and learn from plants and trees
and other photosynthetic organisms,

like algae,

and learn from photosynthesis

in either trying to get those organisms

to produce just a little bit more
of the energy that they produce

and maybe share some of it with us,

or mimic the process

with advanced new technology
in artificial photosynthesis.

Now, in terms of the former,

scientists have obviously long recognized

that plants and trees
and other photosynthetic organisms,

like algae,

they take in sunlight,

draw in CO2,

and use them to generate their own energy

while producing the biomass
that we see on the outside.

If we harvest the energy
that’s stored in that biomass -

burning it would be one way -

and then we capture the carbon
that’s also stored in there

at the same time,

we can find ourselves
in the admirable situation

of being able to generate energy
while lowering CO2 levels.

That is the immense promise
of new biofuels.

Now, obviously,
that’s been a tricky situation

to find ourselves
on the carbon negative side of,

or else we’d be doing it already.

And biofuels themselves
have gotten a lot of bad press recently

in some high-profile documentaries,

but those almost exclusively focus

on just the most poorly planned
biofuel facilities that we’ve ever had

and in no way showcase the real potential,

the best-case scenario,

with biofuel facilities.

I mean, algae-based and
cyanobacteria-based facilities especially,

they can exist anywhere in the world,

anywhere with access to sunlight,

and what’s different now

is that scientists have scoured the world
looking for unique genetic variants.

What they’ll do
is just a little bit better

in terms of being able to produce
the materials that we later use for fuel.

And thanks to new advancements
in gene editing technology,

scientists have begun to improve upon
those components further synthetically,

though, obviously, not to a level
of bringing us carbon-neutral biofuels

at the scales that we would like
for our societies,

but that’s exactly
where an emerging new field

of synthetic biology can come in

to try and tweak core biological processes

to improve upon them even further.

Because, I mean, photosynthesis,
as amazing as it is,

is still wildly inefficient
in doing what it does,

and new advancements like these

could forever change the way we think

about how we get energy
from sunlight on this planet.

Because if a novel cyanobacteria
just existing in a vat somewhere,

in a desert facility or anywhere else
with access to sunlight,

could just sit there in a tube tank

and take in sunlight,
draw down local CO2,

and produce more energy than we spend
trying to refine the process,

we will have solved a significant
component of the climate crisis.

And early research results
are already very promising,

and some labs around the world

are even experimenting
with additional avenues

of trying to get algae strains
to do additional things

besides just sitting there existing -

new things like remediating
the waste water.

They may happen to be

in cleansing out toxic materials
from the batch ponds;

they might be in something to offer
fuel producers another revenue stream

to potentially make it more viable
as something that we can do.

Now, obviously, aside from sunlight,

wind - wind energy as well -
has evolved considerably over time

to the point where a modern wind turbine,

for example, could generate
about 100 times more power

than models from the ‘80s did

while costing only a fraction
of what it used to cost to do so,

to the point now
where new research tells us

that if a country like America

just retrofitted all old turbines
with technology that we have now,

they could already reach
their 2030 energy goals.

And so when it comes
to something like that,

it’s thanks only to small
but incremental, persistent new progress

in new science and new technology

where an evolving science,
like nanotechnology, for example,

could contribute with, you know,
lighter but more durable materials -

a great combination for turbine blades.

It can then potentially spin

with less mechanical force
needed to make the move.

And in terms of talking about
some of the core criticisms

of, you know, renewable energies
like solar and wind -

their intermittency
in the sun not always being around

and the wind not always blowing -

advanced new science and technology
can help there as well.

We have a whole new suite of technologies
called P2X technologies,

and they all essentially
revolve around the idea

that we can take excess renewable energy
produced during times of plenty -

like when the sun is around -

and we can channel that extra energy
and put it to work,

and we can power up other equipment
to put it into a state of potential energy

that we can then cash in on
when we need more energy later,

when the sun goes down.

So, for example, we have
some engineers around the world

experimenting with, say,
taking a reservoir of water,

pumping it into a confined space

so it can then be released

to spring out and wash over
waiting turbines

to produce energy when we need it.

So much like we do right now
with pumped hydro,

where we have, you know, a running river
producing hydroelectric power,

we pump just a little bit of that uphill
and kind of keep it there

and then release it to flow over turbines
when we need extra energy,

but the new innovation here

is that you could do that
essentially anywhere in the world

without needing a large river
right next to your city to make it happen.

Or we have new engineers

exploring the concept
of using excess renewable energy

to pump compressed air
into confined spaces

and then venting it
to create kind of a mechanical force

to, again, work on the same principle
of moving turbine-like technology

and creating excess electricity
when we need it.

Or we have still other engineers
around the world

taking excess renewable energy

and using it to hoist heavy weights
up to high heights in a controlled chamber

where a system managed by AI

can detect even micro dips
in the grid’s energy supply

and engage to slowly lower those weights
to kind of pull on a pulley mechanism

to, again, create a mechanical force

that will spin turbine-like technology
and create electricity when we need it.

But, I mean, all of that is entirely aside

from continuous 24/7 forms
of renewable energy

that fewer of us tend to talk about,

like geothermal energy,

where new innovations are using
smaller, more scalable, modular designs

to take a little tank of water

and then tap the immense heat
that comes from deep inside the Earth

and use it to heat up that water,
turn it into a vapor,

where it then rises

and exerts a mechanical force
on another mechanism inside the chamber

to create electricity

and then, when the vapors
reach the other side of that barrier,

cool down, turn back into liquid form

and then rejoin the initial supply,

and then we can create

an essentially never-ending form
of continuous renewable energy

that exists for as long as we have
the geothermal heat there.

Tidal energy, likewise,

takes advantage of Earth’s
essentially never-ending tidal forces

to create a mechanical force on equipment

that we can try and use
to generate electricity

and augment our grid supply,

especially during times after hours
where the tides don’t stop,

when we might need
just a little bit of extra power.

And all of that

is aside from clean but not necessarily
renewable technologies

like nuclear energy,

where new innovations in nuclear energy
will use, say, molten salt technology

to lower the risk
of an explosive release of gases,

which, FYI, was already very low
to begin with, that risk.

Or we have other new innovations

with labs swapping out
potentially dangerous fuel sources

like uranium,

with far less dangerous fuel sources

like thorium;

or we have other new innovations

taking the heat that’s produced
during the fuel production process,

piping it out for district level heating

as free heat to all local communities

that exist around one of those facilities.

So all those kinds of innovations
are taking place.

And all of these new scientific
and technological innovations,

they all paint a slightly
less grim picture,

offer us a more nuanced narrative
than the all bad news model would suggest,

and they paint us a picture of a future

in which we are taking
cool new solar cell technology,

placing it in cool new places,

having it do cool new things

we never thought
that those panels could do before;

or a future in which, I don’t know,

where we’re lining
the undersides of our sidewalks

with compression-based,
energy-harvesting technology

from the power of human footfall

from pedestrian traffic
all around our cities;

or a future in which
we’re taking wireless charging pads

like we use for our phones now,
but bigger, more powerful ones,

and putting them in parking lots

so an electric vehicle
can just pull in overtop,

and placing wireless charge pads,

at, you know, highway rest stops
and loading zones and things like that;

a future in which we’re
pulling the hydrogen

out of our vast amounts of sea water

to power zero-emissions,
trans-continental passenger flights

with H2 fuel;

a future in which we want to try
and reverse climate change eventually

by pulling down some of the CO2
in our atmosphere

and trying to store it in our soils -

and we have genius-level bioengineers
empowering crops to do that naturally,

store more carbon in the soil
than they otherwise naturally would have,

crops that we’re going to plant
year after year anyway;

or a future in which we want to plant
a lot more trees on our planet,

but now we can much more readily
with advanced technology,

like aerial drones that can self-pilot

thanks to new innovations
in imaging software

coupled with satellite data

that allow them to fire
germinated seed pods into the ground

10 times faster than we human planters
can manage by hand

and far more cheaply,

to the point where we have
one company on paper now

telling us that they’re going to plant
billions of trees over the years to come

using precisely this kind of technology;

in short, a future
in which we rise to our moment,

solve the climate crisis
using new science and new technology

coupled with all of the wonderful
naturalistic options we already had

and where we don’t
let future generations down.

Okay, thank you.

抄写员:Amanda Zhu
审稿人:Peter Van de Ven

大家好。

非常感谢您
收看我们的 TEDx 倒计时活动。

我是马克·绍斯。

我参加倒计时

是因为虽然你现在可能已经听说
了很多关于气候变化

以及我们目前正在
努力应对的所有麻烦,

但很有
可能你还没有 听说

了气候对话的另一面,这

对于
试图让更多人谈论同样重要,

这就是我们实际上谈论
我们将在这里做什么

来解决气候危机的对话的另一面。

因此,我的日常工作包括

梳理
来自世界各地的新学术出版物,

涉及十几个不同的
科学领域,

实际上
是一年中的每一天、每个月。

鸟瞰所有
新传入的科学数据,

尤其是与气候变化相关的数据,

是的,
我们可以在这里谈论很多坏消息,

但也有很多好
消息 可以

谈论人类
在各种气候解决方案方面取得的进展;

此外,这一
进展实际上一直在加快,

尤其是在过去几年中。

因为随着越来越多的国家

开始认识到气候变化
是一种生存威胁,

并且越来越多的
科学家致力于解决

我们需要克服的各种任务
以解决这个问题

,我们一直在看到
的新科学创新的涓涓细流 多年来清洁能源的

步伐明显加快,
引领到现在。

看起来,这种进步,

是在新的科学创新,
新的技术升级中,

这使我们能够
从化石燃料能源过渡,

更多地转向清洁能源
以减少我们的碳排放。

因此,虽然清理我们的能源
部门并不是这个问题的全部,

但它是其中的一个重要部分;

好消息是


我们所有的清洁能源选择

都取得了新的进展,

从主要的清洁能源(

如太阳能和风能)

到 24/7 连续形式
的可再生能源

,我们中的人更少 倾向于谈论

地热能和潮汐能

等清洁能源,
以及核能和氢燃料等其他清洁能源,

以及新型生物燃料的进展。

在过去的几年里,清洁能源技术出现了
如此多引人注目的新创新

,我实际上只能

在我在

这里真正尝试并公正对待其中任何一个的时间里给你一个亮点蒙太奇。

所以,如果你准备好了……特别

考虑太阳能。

太阳能电池技术

得到了如此显着的改进
,成本也急剧下降,

以至于一些分析人士预计,人类至少在未来五年

内将
每小时生产数万块新的太阳能电池板

,因为科学家或工程师

已经设法改善了一切

由于太阳能电池
更强大、更高效、

更耐用、更持久

,尤其是更便宜,世界各地的

发展中社区

可以更容易地
获得这项技术,

甚至取代新的化石燃料
能源工厂,进一步推动需求 .

所以我的意思是,那些

让技术变得更好、更便宜的东西

,真的会刺激更多的
人想要使用它,

而不是仅仅让
人们不道德地使用它。

所以我的意思是,甚至最近,

科学家们已经
设法制造出透明的太阳能电池

,可以放置
在玻璃温室屋顶中,

并集成到
您家的窗户


我们城市摩天大楼的窗户侧面,

或者我们甚至有一些工程师
开发太阳能檐篷

以排列选定的高速公路。

以及其他新的创新——

我们现在甚至有了新的太阳能电池板
,它不仅可以让房主

从电网中为他们的家收获可再生能源,

而且还可以收集
周围空气中的水分,

同时为您的家收集清洁的饮用水 .

开发这些面板的

公司现在甚至与

世界缺水地区的偏远社区合作,

试图同时为他们带来更多清洁能源
和更清洁的饮用水

再一次,这些

正是您希望

在刺激
更多使用这项技术方面看到的创新类型。

或者新的室内太阳能电池如何

收集较低水平
的室内环境光

来为微电子设备以及
房间传感器和恒温

器甚至安全系统供电。

或者

,我们的太阳能电池放置在全新的位置怎么样,
比如漂浮的、有浮力的太阳能垫

,这些太阳能垫位于
水体之上——

所谓的“浮动光伏”

——可以停靠在湖泊和水库上,
或者,你知道的, 河流的顶部

,同时也提供
水力发电,

或者,当然,
在世界部分地区的海岸线

上,你知道,备用
土地短缺,

在那里你可以获得
凉爽的运行的额外好处 温度 -

你知道,提高电池效率水平

不需要
先去演示大片土地


你的大型新太阳能农场让路的巨大额外好处。

或者新
的所谓的反太阳能电池

板如何利用

太阳光线照射地球表面的事实,

并且相当一部分
能量被吸收为热能 -

炎热的晴天,炎热的表面 -

并且慢慢地, 随着时间的推移,
它会消散回太空。

反太阳能电池板

在其反向通道中捕获一些热能,
返回太空。

现在,显然,

当时
的能源量并不是巨大的,

但一项新的研究表明

,您可以
从传统太阳能电池中获得大约 25% 的能量

,我的意思是,
这比零能量的百分比有了显着改善

我们现在正在
从屋顶面板上一夜之间收获。

现在,显然,

我们可以利用阳光做更多的事情,

而不仅仅是屋顶面板
和透明的能量收集器。

我们也可以仰望大自然

,从植物、树木
和其他光合生物(

如藻类)中

学习,并从光合作用中学习,

试图让这些

生物产生更多
的能量,

并可能分享其中的一部分 和我们一起,

或者

用先进
的人工光合作用新技术模仿这个过程。

现在,就前者而言,

科学家们显然早就认识到

,植物、树木
和其他光合生物,

如藻类,

它们吸收阳光,

吸收二氧化碳,

并利用它们产生自己的能量,

同时
产生我们看到的生物质 外。

如果我们收获
储存在生物质中的能量——

燃烧它是一种方式——

然后我们同时捕获
也储存在那里的碳,

我们会发现自己
处于一种令人钦佩的境地

,能够在降低能源的同时产生能量
二氧化碳水平。

这就是
新型生物燃料的巨大前景。

现在,很明显,

要发现自己
处于碳负排放方面是一个棘手的情况,

否则我们已经这样做了。

生物燃料本身
最近

在一些备受瞩目的纪录片中受到了很多负面报道,

但那些几乎完全只

关注我们曾经拥有的规划最差的
生物燃料设施,

并没有展示真正的潜力

,最好的情况 情景

,生物燃料设施。

我的意思是,特别是基于藻类和
蓝藻的设施,

它们可以存在于世界

任何地方,任何有阳光的地方,

而现在不同的

是,科学家们已经在世界各地
寻找独特的遗传变异。

他们将做
的只是

在能够生产
我们以后用作燃料的材料方面做得更好一些。

并且由于
基因编辑技术的新进展,

科学家们已经开始
进一步综合改进这些成分,

但显然,还没有
达到我们希望社会规模达到碳中和生物燃料

的水平

但这正是
一个新兴

的合成生物学新领域可以进入,

尝试调整核心生物过程,

以进一步改进它们。

因为,我的意思是,光合作用
虽然令人惊叹,但在完成它的工作

时仍然非常低效

而像这样的新进展

可能会永远改变

我们对如何
从地球上的阳光中获取能量的看法。

因为如果一种新的蓝藻
刚刚存在于某个地方的大桶中、

沙漠设施中或其他任何可以
接触到阳光的地方,

就可以坐在管式水箱

中吸收阳光,
吸收当地的二氧化碳,

并产生比我们尝试的更多的能量
为了完善这一过程,

我们将解决
气候危机的一个重要组成部分。

早期的研究
结果已经非常有希望了,

世界各地的一些实验室

甚至正在
尝试其他途径

,试图让藻类
菌株做更多的事情

,而不仅仅是坐在那里——

新的事情,比如
修复废水。

他们可能碰巧

在清理
批次池中的有毒物质;

他们可能会为
燃料生产商提供另一种收入来源

,以使其更可行,
成为我们可以做的事情。

现在,显然,除了阳光,

风能——风能——
也随着时间的推移发生了很大的变化

,例如,现代风力涡轮机的

发电量

是 80 年代模型的 100 倍左右,

而成本仅为
这样做的成本只是过去的一小部分,

现在新的研究告诉我们

,如果像美国这样的国家

用我们现在拥有的技术改造所有旧涡轮机,

它们就已经可以
达到 2030 年的能源目标。

因此,当涉及
到类似的事情时,

这要归功于新科学和新技术的微小
但渐进的、持续的新

进展,

其中不断发展的科学
,例如纳米

技术,可以用
更轻但更耐用的材料做出贡献 -

涡轮叶片的绝佳组合。

然后,它可能会

以更少的机械力旋转,
从而实现移动。

谈到对太阳能和风能等

可再生能源的一些核心批评
——

它们
在阳光下的间歇性并不总是存在

,风也不总是在吹——

先进的新科学技术
也可以在这方面提供帮助。

我们有一套全新的技术,
称为 P2X 技术

,它们基本上
都围绕着这样一种想法

,即我们可以
在充足的时候——

比如在太阳周围——产生多余的可再生能源

,我们可以引导额外的能量
并将其投入使用 工作

,我们可以启动其他设备
,使其进入势能状态,

然后
当我们需要更多能量时,

当太阳下山时,我们可以兑现。

因此,例如,我们有
一些世界各地的工程师正在

试验,例如,
取一个水库,

将其泵入一个密闭

空间,然后可以将其释放

出来并冲刷
等待的涡轮机,

以便在我们需要时产生能量 .

就像我们现在对抽水蓄能所做的那样

,我们有一条流淌的河流,
产生水力发电,

我们只抽一点上坡的水,
然后把它留在那里

,然后当我们释放它流过涡轮机
时 需要额外的能量,

但这里的新创新

是你可以在世界任何地方做到这一点,

而不需要
在你的城市旁边有一条大河来实现。

或者我们让新工程师

探索
使用多余的可再生能源

将压缩空气泵
入密闭空间

,然后将其排出
以产生一种机械力

的概念,再次按照
移动涡轮技术

和产生多余电力的相同原理工作
当我们需要它时。

或者,我们在世界各地还有其他工程师

采用多余的可再生能源,

并使用它
在受控室中将重物提升到高处,在

那里由人工智能管理的系统

可以检测
到电网能源供应中的微小下降,

并参与缓慢降低这些 重物
可以拉动滑轮

机构,从而再次产生机械力,该机械力

将旋转类似涡轮机的技术
并在我们需要时发电。

但是,我的意思是,所有这一切都完全不包括我们很少人谈论

的连续 24/7 形式
的可再生能源

比如地热能,

其中新的创新正在使用
更小、更可扩展的模块化设计

来占用一个小罐 水

,然后利用
来自地球深处的巨大热量

,用它来加热水,
把它变成蒸汽,

然后它上升


在室内的另一个机构上施加机械力

来发电

,然后 ,当蒸汽
到达屏障的另一侧时,

冷却下来,变回液体形式

,然后重新加入初始供应,

然后我们可以创造

一种基本上永无止境
的持续可再生能源形式

,只要我们有
那里的地热。

同样,潮汐

能利用地球上
永无止境的潮汐力

在设备上产生机械力

,我们可以尝试使用它
来发电

并增加我们的电网供应,

尤其是
在潮汐不会停止的几个小时后,

当我们可能
只需要一点额外的力量时。

所有这些

都是除了清洁但不一定是
可再生技术(

如核能)之外,

核能的新创新
将使用熔盐技术

来降低
气体爆炸释放的风险

,仅供参考,这已经非常低了
首先,风险。

或者我们有其他新的创新

,实验室将

铀等

具有潜在危险的燃料源换成钍等危险性低得多的燃料源

或者,我们还有其他新的创新,

将燃料生产过程中产生的热量通过

管道输送到区域供暖,

作为免费热量提供给

其中一个设施周围的所有当地社区。

因此,所有这些创新
都在发生。

所有这些新的
科技创新,

它们都描绘了一幅稍微
不那么严峻的画面,

为我们提供了一个
比所有坏消息模型所暗示的更细致入微的叙述

,它们为我们描绘了一幅

我们正在采取
酷新的未来的画面 太阳能电池技术,

将其放置在凉爽的新地方

,让它做一些

我们以前从未想过
这些电池板可以做的很酷的新事情;

或者在未来,我不知道

,我们在
人行道的底部

使用基于压缩的
能量收集技术,

从我们城市周围行人交通的人类脚步的力量中获取能量

或者未来
我们将使用无线充电板,

就像我们现在用于手机一样,
但更大、更强大的无线充电板,

并将它们放在停车场,

这样电动汽车
就可以停在车顶上,

并将无线充电板放置

在 ,你知道,高速公路休息站
和装载区等等;

未来

,我们将从大量海水中提取氢气,为使用 H2 燃料的

零排放
跨大陆客运航班

提供动力;

在未来,我们希望

通过减少
大气中的一些二氧化碳

并将其储存在土壤中来最终扭转气候变化

——我们拥有天才级的生物工程师,
让作物能够自然地做到这一点,

储存更多的碳 土壤
比他们自然拥有的土壤,无论如何

我们都要年复一年地种植的庄稼

或者我们希望
在地球上种植更多树木的未来,

但现在我们可以更轻松地
使用先进技术,

例如可以自动驾驶的空中无人机,

这要归功于
成像软件的新创新

以及卫星

数据允许它们 将
发芽的种子荚发射到地里的

速度比我们人类种植者手工管理的速度快 10 倍

,而且成本

要低得多,以至于我们现在有
一家公司在纸上

告诉我们,他们将
在这些年里种植数十亿棵树 来

正是使用这种技术;

简而言之,
未来我们将奋起直追,

利用新科学和新技术

以及
我们已经拥有的所有美妙的自然主义选择

以及我们不会
让后代失望的方式来解决气候危机。

好的谢谢。