SpiderMan Technology from Science Fiction to Reality

Transcriber: Nhung Nguyen
Reviewer: Hani Eldalees

Spiders.
They are fascinating creatures

and their webs are almost perfect.

They’re strong and elastic
at the same time,

the most durable material we know
and almost entirely sterile.

Since the 1980s, people have tried
to manufacture spider silk

in the lab without success.

But this man did succeed.

Thomas Scheibel.

The basic idea was simple.

From the genetic material of the spider

copy the piece of DNA
responsible for spider silk

then inserted into
the genome of some bacteria.

The bacteria produce the spider silk
protein and then it can be harvested.

Spiders are fascinating creatures.

Look at the beauty of these animals,

they come in different colors and sizes,

and we know more than 48000 species
around the world nowadays.

They live in different areas of the world,

and they produce different spider webs.
This is what we interested in.

Most of you ask probably the question,
hunt spiders dangerous?

Well, I have a clear answer to that.

I found this sign in Australia that
clearly indicates that in 2013,

almost forty five thousand
people died by cancer,

but zero incidents occurred with spiders.

And this is intriguing because

Australia is known for the most venomous
and most toxic animals,

also most toxic spiders in the world.

My interest is in spider webs.

Spiders are perfect predators and
they use spider silk for hunting prey.

This is fascinating,

Because spider silk developed
over millions of years

to be mechanically one of the most
robust materials in the world.

On the other hand, you can actually take
a spider web and put it on the wounds.

This is known since more than
two thousand years

that you can use
the spider web as a wound closure device.

So can we now use spiders
as silk producers?

You might say, of course.

But the real answer is unfortunately no,
because most spiders are cannibalistic,

which means if we bring them together
in one farm or in one box,

they start to eat each other.

And then
we just have one surviving spider.

On the other hand, in captivity,

spiders lose the ability to
make high quality silk.

The reason is we are feeding the spiders

and therefore there is no need to get
high quality silk webs to hunt prey.

So how can we access now
this fascinating spider silk?

If we cannot use the spiders
as a producer, what can we do?

Twenty years ago, we developed
a biotechnological process

which we nowadays called

the Spider Man technology.

Because we take information
from the spider,

we actually identified the genes

and now we have to design these genes

in order to make them usable
in what we call a recombinant process.

We take the genetic information,

we design it, we engineer it,

and then we introduce that with a
transporter into a host organism,

which in our case is a bacterium.

and the bacteria can now produce
tons of spider silk protein.

20 years after this development,

now, real products
made of spier silk are available.

There are cosmetic products like
skincare or hair care products,

and there is textiles like
armrests for watches.

Of course, mechanical properties are
really outstanding and very intriguing

for a lot of applications.

Now, I would like to draw your attention
to the biomedical aspects of spider silk.

I would like to take a detour because
I would like to talk about biofilms.

Nowadays, we have to deal
with a lot of pathogens

that we have in our respiratory system
or in the intestine.

If we have, they are the wrong microbes.

They might form a so-called biofilm,

which is a huge colony that protects
itself with a coverage of sugars.

And this coverage actually
prevents antibiotics

to reach the germs than microbes
and therefore they get resistant.

How can we prevent now biofilm formation
if antibiotics are not active anymore?

This can be done to so-called
nanostructure surfaces.

And here spider silk has really
outstanding properties,

because by nature, the surface structure
of silk is nanostructure.

I personally are so impressed by
the properties of spider silk,

because spider silk performs very
well in the human tissues.

Human body cells can grow on
silk without any problems.

And therefore spider silk
is a perfect scaffold

for human body cells to generate
a new tissue.

In combination with
the repellency of penetrance that

gives spider silk
bio’s selective property.

And this makes it really
a stand-alone material

for future medical applications.

Spider silk allows human tissue to grow
and repels all the pathogens without

the need of antibiotics and without
causing resistances against antibiotics.

So now this is really changing tides.

I’m fascinating that we can use the
blueprint given by the spiders.

We can take all the information
of natural spider genes.

We can design new materials in
a biotechnological process,

our spider man technology,

and then we can process these
materials into applications.

We can nowadays use spider silk materials
for skin regeneration.

We can actually heal broken nerves.

We can use bone regeneration.

And one of my favorites is
we can repair a broken heart.

And here comes a problem.

If we have a heart attack,
heart muscle tissue dies

and heart muscle cells cannot regenerate,
so they need external support.

Without any help,
there is a scar inside the heart

which actually has a huge impact
on the future function.

Therefore,
even if you survive a heart attack,

We would like to solve this problem

by removing the scar tissue with
newly generated heart muscle tissue.

And for that we need spider silk.

Because we can 3D print
spider silk scaffolds

and we can implement heart muscle cells
directly in the printing process.

This is what we call biofabrication.

In this video, you see printed spider silk
scaffolds with heart muscle cells.

The heart muscle cells have the
possibility to beat on their own,

and they’re synchronized within
the first two to three days.

In the video, you can see that

the printed construct still beat after
fifty five days of culture in the lab.

For us, this is a promise for the future

because this highlights that

we can use spider silk paste,
heart muscle tissue

for future applications

and maybe we can really
repair a broken heart.

抄写员:Nhung Nguyen
审稿人:Hani Eldalees

Spiders。
它们是迷人的生物

,它们的网几乎是完美的。

它们既坚固又
富有弹性,是

我们所知道的最耐用的材料
,几乎完全无菌。

自 1980 年代以来,人们尝试在实验室
中制造蜘蛛丝

,但没有成功。

但是这个人确实成功了。

托马斯·谢贝尔。

基本想法很简单。

从蜘蛛的遗传物质中

复制负责蜘蛛丝的 DNA 片段,

然后插入到
一些细菌的基因组中。

细菌产生蜘蛛丝
蛋白,然后可以收获。

蜘蛛是迷人的生物。

看看这些动物的美丽,

它们有不同的颜色和大小

,如今我们知道全世界有 48000 多种

它们生活在世界的不同地区

,生产不同的蜘蛛网。
这就是我们感兴趣的。你们中的

大多数人可能会问这个问题,
猎蜘蛛危险吗?

嗯,我有一个明确的答案。

我在澳大利亚发现了这个标志,
清楚地表明在 2013 年,有

近 45,000
人死于癌症,

但蜘蛛的事件为零。

这很有趣,因为

澳大利亚

以世界上毒性最大、毒性最强的动物以及毒性最大的蜘蛛而闻名。

我的兴趣是蜘蛛网。

蜘蛛是完美的捕食者,
它们使用蜘蛛丝捕食猎物。

这令人着迷,

因为蜘蛛丝
经过数百万年的发展

,在机械
上成为世界上最坚固的材料之一。

另一方面,您实际上可以取
一张蜘蛛网并将其放在伤口上。

两千多年以来

,人们就知道可以
将蜘蛛网用作伤口闭合装置。

那么我们现在可以将蜘蛛
用作丝绸生产商吗?

你可能会说,当然。

但不幸的是,真正的答案是否定的,
因为大多数蜘蛛都是自相残杀的,

这意味着如果我们把它们
放在一个农场或一个盒子里,

它们就会开始互相吃掉。

然后
我们只有一只幸存的蜘蛛。

另一方面,在圈养中,

蜘蛛失去了
制造高质量丝绸的能力。

原因是我们正在喂蜘蛛

,因此没有必要获得
高质量的丝网来捕食猎物。

那么我们现在如何才能获得
这种迷人的蜘蛛丝呢?

如果我们不能使用蜘蛛
作为生产者,我们能做什么?

二十年前,我们开发
了一种生物技术工艺

,我们现在

称之为蜘蛛侠技术。

因为我们从蜘蛛那里获取信息

我们实际上识别了这些基因

,现在我们必须设计这些基因

,以使它们可
用于我们所说的重组过程。

我们获取遗传信息,

我们设计它,我们改造它,

然后我们用
转运蛋白将它引入宿主生物体

,在我们的例子中是一种细菌。

细菌现在可以产生
大量的蜘蛛丝蛋白。

经过这一发展 20 年后,

现在
可以使用由螺旋丝制成的真正产品。


护肤品或护发产品等化妆品,

还有
手表扶手等纺织品。

当然,对于许多应用来说,机械性能
确实非常出色并且非常有趣

现在,我想提请您
注意蜘蛛丝的生物医学方面。

我想绕道而行,因为
我想谈谈生物膜。

如今,我们必须处理

呼吸系统
或肠道中的许多病原体。

如果我们有,它们就是错误的微生物。

它们可能会形成所谓的生物膜,

这是一个巨大的菌落,可以
用糖来保护自己。

这种覆盖实际上
可以防止

抗生素接触到细菌而不是微生物
,因此它们会产生抗药性。 如果抗生素不再有效,

我们现在如何防止生物膜形成

这可以对所谓的
纳米结构表面进行。

而这里的蜘蛛丝具有非常
出色的性能,

因为从本质上讲,丝的表面结构
是纳米结构。

我个人
对蜘蛛丝的特性印象深刻,

因为蜘蛛丝
在人体组织中的表现非常好。

人体细胞可以
毫无问题地在丝绸上生长。

因此蜘蛛丝

是人体细胞
生成新组织的完美支架。

结合
外显的排斥性,

赋予蜘蛛丝
生物的选择性。

这使它

成为未来医疗应用的真正独立材料。

蜘蛛丝允许人体组织生长
并排斥所有病原体,而

无需抗生素,也不会
引起对抗生素的抗药性。

所以现在这真的是改变潮流。

我很高兴我们可以使用
蜘蛛给出的蓝图。

我们可以获取
自然蜘蛛基因的所有信息。

我们可以
在生物技术过程中设计新材料,

我们的蜘蛛侠技术,

然后我们可以将这些
材料加工成应用程序。

我们现在可以使用蜘蛛丝材料
进行皮肤再生。

我们实际上可以治愈受伤的神经。

我们可以使用骨骼再生。

我最喜欢的一个是
我们可以修复一颗破碎的心。

问题来了。

如果我们心脏病发作,
心肌组织就会死亡

,心肌细胞无法再生,
所以它们需要外部支持。

在没有任何帮助的情况下,
心脏内部出现了一道疤痕,

这实际上对未来的功能产生了巨大的影响

因此,
即使您在心脏病发作中幸存下来,

我们也希望

通过用
新生成的心肌组织去除疤痕组织来解决这个问题。

为此,我们需要蜘蛛丝。

因为我们可以 3D 打印
蜘蛛丝支架

,我们可以
直接在打印过程中实现心肌细胞。

这就是我们所说的生物制造。

在这段视频中,您会看到
带有心肌细胞的印刷蜘蛛丝支架。

心肌细胞有
可能自行跳动

,它们会在
最初的两到三天内同步。

在视频中,您可以看到在实验室培养 55

天后,打印出来的结构仍然可以跳动

对我们来说,这是对未来的承诺,

因为这突显了

我们可以将蜘蛛丝糊、
心肌组织

用于未来的应用

,也许我们真的可以
修复一颗破碎的心。