The emergence of 4D printing Skylar Tibbits

this is me building a prototype for six

hours straight

this is slave labor to my own project

this is what the DIY and maker movements

really look like and this is an analogy

for today’s construction and

manufacturing worlds with brute-force

assembly techniques and this is exactly

why I started studying how to program

physical materials to build themselves

but there is another world today at the

micro nano scales there’s an

unprecedented revolution happening and

this is the ability to program physical

and biological materials to change shape

change properties and even compute

outside of silicon-based matter there’s

even a software called CAD nano that

allows us to design three-dimensional

shapes like nano robots or drug delivery

systems and use DNA to self assemble

those functional structures but if we

look at the human scale there’s massive

problems that aren’t being addressed by

those nano scale technologies if we look

at construction and manufacturing

there’s major inefficiencies energy

consumption and excessive labour

techniques in infrastructure let’s just

take one example take piping in water

pipes we have fixed capacity water pipes

that have fixed flow rates except for

expensive pumps and valves we bury them

in the ground if anything changes the

environment changes the ground moves or

demand changes we have to start from

scratch and take them out and replace

them so I’d like to propose that we can

combine those two worlds that we can

combine the world of the nanoscale

programmable adaptive materials and the

built environment and I don’t mean

automated machines I don’t just mean

smart machines that replace humans but I

mean programmable materials that build

themselves and that’s called

self-assembly which is a process by

which disordered parts build an ordered

structure through only local interaction

so what do we need if we want to do this

at the human scale

we need a few simple ingredients the

first ingredient is materials in

geometry and that needs to be tightly

coupled with the energy source and you

can use passive energy so heat shaking

pneumatics gravity magnetics and then

you need smartly designed interactions

and those interactions allow for error

correction and they allowed the shapes

to go from one state to another state so

now I’m going to show you a number of

projects that we’ve built from

one-dimensional two-dimensional

three-dimensional and even

four-dimensional systems so in

one-dimensional systems this is a

project called the self-folding proteins

and the idea is that you take the

three-dimensional structure of a protein

in this case it’s the Kramden protein

you take the backbone so no

cross-linking no environmental

interactions and you break that down

into a series of components and then we

embed elastic and when I throw this up

into the air and catch it it has the

full three-dimensional structure of the

protein all of the intricacies and this

gives us a tangible model of the

three-dimensional protein and how it

folds and all of the intricacies of the

geometry so we can study this as a

physical intuitive model and we’re also

translating that into two-dimensional

systems so flat sheets that can cell

fold into three-dimensional structures

in three dimensions we did a project

last year at tEDGlobal with autodesk and

arthur olsen where we looked at

autonomous parts so individual parts not

pre connected that can come together on

their own and we built 500 of these

glass beakers they had different

molecular structures inside and

different colors that could be mixed and

matched and we gave them away to all the

tedsters and so these became intuitive

models to understand how molecular

self-assembly works at the human scale

this is the poliovirus you shake it hard

and it breaks apart and then you shake

it randomly and it starts to error

correct and build the structure on its

own and this is demonstrating that

through random energy we can build non

random shapes we even demonstrated that

we can do this at a much larger scale

last year at Ted Long Beach we built an

installation that builds installations

the idea was could we self assemble

furniture scale objects so we built a

large rotating chamber and people would

come up and spin the chamber faster or

slower adding energy to the system and

getting an intuitive understanding of

how self-assembly works and how could we

use this as a macroscale construction or

manufacturing techniques for products so

remember I said 4d so today for the

first time we’re unveiling a new project

which is a collaboration with Stratasys

and it’s called 4d printing the idea

behind 4d printing is that you take

multi-material 3d printing so you can

deposit multiple materials and you add a

new capability which is transformation

that right off the bed the parts can

transform from one shape to another

shape directly on their own and this is

like robotics without wires or motors so

you completely print this part and it

can transform into something else we

also worked with autodesk on a software

they’re developing called project

cyborgs and this allows us to simulate

this self-assembly behavior and try to

optimize which parts are folding when

but most importantly we can use this

same software for the design of

nanoscale self-assembly systems and

human scale self-assembly systems these

are parts being printed with multi

material properties here’s a first

demonstration a single strand dipped in

water that completely cell folds on its

own into the letters MIT I’m biased this

is another part single strand dipped in

a bigger tank that cell folds into a

cube three dimensional structure on its

own so no human interaction and we think

this is the first time that a program

and transformation has been embedded

directly into the materials themselves

and it also might just be the

manufacturing technique that allows us

to produce more adaptive infrastructure

in the future so I know you’re probably

thinking okay that’s cool but how do we

use any of this stuff for the built

environment so I’ve started a lab at MIT

and it’s called a self-assembly lab and

we’re dedicated to trying to develop

programmable materials for the built

environment and we think there’s a few

key sectors that have fairly near-term

applications one of those is in extreme

environments

these are scenarios where it’s difficult

to build our current construction

techniques don’t work it’s too large

it’s too dangerous it’s expensive too

many parts and space is a great example

of that we’re trying to design new

scenarios for space that have fully

reconfigurable and self-assembly

structures that can go for highly

functional systems from one to another

let’s go back to infrastructure in

infrastructure we’re working with a

company out of boston called geosyntec

and we’re developing a new paradigm for

piping imagine if water pipes could

expand or contract to change capacity or

change flow rate or maybe even undulate

like peristaltic s– to move the water

themselves so this is an expensive pumps

or valves this is a completely

programmable and adaptive pipe on its

own so I want to remind you today of the

harsh realities of assembly in our world

this is complex things built with

complex parts that come together in

complex ways so I would like to invite

you from whatever industry are from to

join us in reinventing and reimagining

the world how things come together from

the nano scale to the human scale so

that we can go from a world like this to

a world that’s more like this

thank you

这是我连续六个小时构建原型

这是我自己项目的奴隶

这是 DIY 和创客运动的

真实样子 这是

对当今建筑和

制造世界的一个类比与蛮力

组装技术这正是

为什么我开始研究如何对

物理材料进行编程以构建自己,

但是今天在

微纳米尺度上还有另一个世界发生了

前所未有的革命,

这就是对物理

和生物材料进行编程以改变形状

变化特性甚至

在硅之外进行计算的能力 -

甚至还有一个名为 CAD nano 的软件,它

允许我们设计三维

形状,如纳米机器人或药物输送

系统,并使用 DNA 自行组装

这些功能结构,但如果我们

看看人类规模,就会

发现很多问题

如果我们看看那里的建筑和制造,这些纳米级技术正在解决

这个问题” s 主要的低效率 基础设施中的能源

消耗和过度劳动

技术 我们只

举一个例子 以水管中的

管道 我们有固定容量的水管

,除了

昂贵的泵和阀门外,我们将它们埋

在地下 如果

环境发生任何变化 地面移动或

需求变化,我们必须

从头开始,取出并替换

它们,所以我想

建议我们可以将这两个世界结合起来,我们可以

将纳米级

可编程自适应材料的世界和

建筑环境结合起来, 我指的不是

自动化机器,我指的不仅仅是

取代人类的智能机器,而是

指可以自行构建的可编程材料

,这就是所谓的

自组装,这是一个过程

,无序部件

仅通过局部交互来构建有序结构,

所以什么 如果我们想在人类规模上做到这一点

我们需要一些简单的

成分吗? nt 是几何学中的材料

,需要

与能源紧密耦合,您

可以使用被动能量,例如热振动

气动重力磁,然后

您需要巧妙设计的交互

,这些交互允许

纠错,它们允许

形状从 一个状态到另一个状态 所以

现在我要向你展示

我们从

一维

二维三维甚至

四维系统构建的一些项目所以在

一维系统中这是

一个名为 自折叠

蛋白质的想法是,您

采用蛋白质的三维结构,

在这种情况下,它是 Kramden 蛋白质,

您采用主链,因此没有

交联,没有环境

相互作用,您将其分解

为一系列组件和 然后我们

嵌入弹性,当我把它

扔到空中并接住它时,它具有蛋白质的

完整三维结构

所有错综复杂的东西和这个

我们是三维蛋白质的有形模型,

以及它如何

折叠以及几何的所有复杂性,

因此我们可以将其作为

物理直观模型进行研究,我们还将

其转化为二维

系统,因此可以 细胞

折叠成三维结构

去年我们在 tEDGlobal 与 Autodesk 和

arthur olsen 合作了一个项目,我们研究了

自主部件,因此各个部件没有

预先连接,可以自行组合在一起

,我们制造了 500 个这样的

玻璃烧杯 它们内部有不同的

分子结构和

不同的颜色,可以混合和

匹配,我们把它们送给所有的

测试者,所以这些变成了直观的

模型,可以理解分子

自组装在人类尺度上是如何工作的,

这就是你用力摇晃的脊髓灰质炎病毒

它会分解,然后你

随机摇晃它,它开始

纠错并自行构建结构

,这证明

了 粗略的随机能量 我们可以构建非

随机形状 我们甚至证明了

我们可以在去年的 Ted Long Beach 以更大的规模做到这一点

我们建造了一个

装置来建造装置

我们的想法是我们可以自行组装

家具规模的物体所以我们建造了一个

大型的 旋转室,人们会上

来并更快或

更慢地旋转室,为系统增加能量,并

直观地

了解自组装的工作原理以及我们如何

将其用作产品的宏观构造或

制造技术,所以

请记住我说过 4d 所以今天

我们第一次推出了

一个与 Stratasys 合作的新项目

,它被称为 4d 打印 4d 打印背后的想法

是您可以采用

多材料 3d 打印,这样您就可以

沉积多种材料并添加

新功能 这是一种转换

,即在床上,零件可以

直接从一种形状转换为另一种形状,这

就像 ro 没有电线或电机的机器人,所以

你可以完全打印这个零件,它

可以转换成其他东西

折叠时,

但最重要的是,我们可以使用

相同的软件来设计

纳米级自组装系统和

人体规模自组装系统,这些

是打印具有多种

材料特性的部件 这是第一个

演示 单股浸入

水中,完全细胞 自己折叠

成字母 MIT 我有偏见 这

是另一部分 单股浸入

一个更大的水箱中,细胞自行折叠成

立方体 3D 结构,

因此没有人为交互,我们认为

这是第一次

和转换已

直接嵌入材料本身

,它也可能只是

制造技术允许我们

在未来生产更具适应性的基础设施

,所以我知道你可能

认为这很酷,但是我们如何

将这些东西用于建筑

环境,所以我在麻省理工学院建立了一个实验室

,它被称为自组装实验室

我们致力于尝试

为建筑环境开发可编程材料

,我们认为有一些

关键领域具有相当近期的

应用,其中之一是在极端

环境中,

这些场景

很难构建我们当前的建筑

技术。 行不通

太大 太危险 太贵

太多零件和空间就是一个很好的

例子 我们正在尝试设计

具有完全

可重构和自组装

结构的新空间场景 另一个

让我们回到基础设施中的

基础设施,我们正在与

波士顿以外的一家名为 geosyntec 的公司合作

,我们正在开发一种新的

管道想象范式 e 如果水管可以

膨胀或收缩以改变容量或

改变流量,甚至可能

像蠕动一样波动——让水自己移动,

所以这是一个昂贵的泵

或阀门,这是一个完全

可编程和自适应的管道

,所以我 今天想提醒您

,我们这个世界装配的严酷现实,

这是由

复杂零件以

复杂方式组装而成的复杂事物,因此我想

邀请来自任何行业的您

加入我们,共同重塑和重新构想

世界

从纳米尺度到人类尺度的事物聚集在一起,

这样我们就可以从这样的世界进入

更像这样的世界,

谢谢