The next step in nanotechnology George Tulevski

Translator: Leslie Gauthier
Reviewer: Joanna Pietrulewicz

Let’s imagine a sculptor
building a statue,

just chipping away with his chisel.

Michelangelo had this elegant way
of describing it when he said,

“Every block of stone
has a statue inside of it,

and it’s the task
of the sculptor to discover it.”

But what if he worked
in the opposite direction?

Not from a solid block of stone,

but from a pile of dust,

somehow gluing millions of these particles
together to form a statue.

I know that’s an absurd notion.

It’s probably impossible.

The only way you get
a statue from a pile of dust

is if the statue built itself –

if somehow we could compel millions
of these particles to come together

to form the statue.

Now, as odd as that sounds,

that is almost exactly the problem
I work on in my lab.

I don’t build with stone,

I build with nanomaterials.

They’re these just impossibly small,
fascinating little objects.

They’re so small that if this controller
was a nanoparticle,

a human hair would be the size
of this entire room.

And they’re at the heart of a field
we call nanotechnology,

which I’m sure we’ve all heard about,

and we’ve all heard
how it is going to change everything.

When I was a graduate student,

it was one of the most exciting times
to be working in nanotechnology.

There were scientific breakthroughs
happening all the time.

The conferences were buzzing,

there was tons of money
pouring in from funding agencies.

And the reason is

when objects get really small,

they’re governed by a different set
of physics that govern ordinary objects,

like the ones we interact with.

We call this physics quantum mechanics.

And what it tells you is
that you can precisely tune their behavior

just by making seemingly
small changes to them,

like adding or removing
a handful of atoms,

or twisting the material.

It’s like this ultimate toolkit.

You really felt empowered;
you felt like you could make anything.

And we were doing it –

and by we I mean my whole
generation of graduate students.

We were trying to make blazing fast
computers using nanomaterials.

We were constructing quantum dots

that could one day go in your body
and find and fight disease.

There were even groups
trying to make an elevator to space

using carbon nanotubes.

You can look that up, that’s true.

Anyways, we thought it was going to affect

all parts of science and technology,
from computing to medicine.

And I have to admit,

I drank all of the Kool-Aid.

I mean, every last drop.

But that was 15 years ago,

and –

fantastic science was done,
really important work.

We’ve learned a lot.

We were never able to translate
that science into new technologies –

into technologies
that could actually impact people.

And the reason is, these nanomaterials –

they’re like a double-edged sword.

The same thing that makes
them so interesting –

their small size –

also makes them impossible to work with.

It’s literally like trying to build
a statue out of a pile of dust.

And we just don’t have the tools
that are small enough to work with them.

But even if we did,
it wouldn’t really matter,

because we couldn’t one by one
place millions of particles together

to build a technology.

So because of that,

all of the promise
and all of the excitement

has remained just that:
promise and excitement.

We don’t have any
disease-fighting nanobots,

there’s no elevators to space,

and the thing that I’m most interested in,
no new types of computing.

Now that last one,
that’s a really important one.

We just have come to expect

the pace of computing advancements
to go on indefinitely.

We’ve built entire economies on this idea.

And this pace exists

because of our ability
to pack more and more devices

onto a computer chip.

And as those devices get smaller,

they get faster, they consume less power

and they get cheaper.

And it’s this convergence
that gives us this incredible pace.

As an example:

if I took the room-sized computer
that sent three men to the moon and back

and somehow compressed it –

compressed the world’s
greatest computer of its day,

so it was the same size
as your smartphone –

your actual smartphone,

that thing you spent 300 bucks on
and just toss out every two years,

would blow this thing away.

You would not be impressed.

It couldn’t do anything
that your smartphone does.

It would be slow,

you couldn’t put any of your stuff on it,

you could possibly
get through the first two minutes

of a “Walking Dead” episode
if you’re lucky –

(Laughter)

The point is the progress –
it’s not gradual.

The progress is relentless.

It’s exponential.

It compounds on itself year after year,

to the point where
if you compare a technology

from one generation to the next,

they’re almost unrecognizable.

And we owe it to ourselves
to keep this progress going.

We want to say the same thing
10, 20, 30 years from now:

look what we’ve done
over the last 30 years.

Yet we know this progress
may not last forever.

In fact, the party’s kind of winding down.

It’s like “last call for alcohol,” right?

If you look under the covers,

by many metrics
like speed and performance,

the progress has already slowed to a halt.

So if we want to keep this party going,

we have to do what we’ve
always been able to do,

and that is to innovate.

So our group’s role
and our group’s mission

is to innovate
by employing carbon nanotubes,

because we think that they can
provide a path to continue this pace.

They are just like they sound.

They’re tiny, hollow tubes
of carbon atoms,

and their nanoscale size,
that small size,

gives rise to these
just outstanding electronic properties.

And the science tells us
if we could employ them in computing,

we could see up to a ten times
improvement in performance.

It’s like skipping through several
technology generations in just one step.

So there we have it.

We have this really important problem

and we have what is basically
the ideal solution.

The science is screaming at us,

“This is what you should be doing
to solve your problem.”

So, all right, let’s get started,

let’s do this.

But you just run right back
into that double-edged sword.

This “ideal solution” contains a material
that’s impossible to work with.

I’d have to arrange billions of them
just to make one single computer chip.

It’s that same conundrum,
it’s like this undying problem.

At this point, we said, “Let’s just stop.

Let’s not go down that same road.

Let’s just figure out what’s missing.

What are we not dealing with?

What are we not doing
that needs to be done?”

It’s like in “The Godfather,” right?

When Fredo betrays his brother Michael,

we all know what needs to be done.

Fredo’s got to go.

(Laughter)

But Michael – he puts it off.

Fine, I get it.

Their mother’s still alive,
it would make her upset.

We just said,

“What’s the Fredo in our problem?”

What are we not dealing with?

What are we not doing,

but needs to be done
to make this a success?"

And the answer is
that the statue has to build itself.

We have to find a way, somehow,

to compel, to convince
billions of these particles

to assemble themselves
into the technology.

We can’t do it for them.
They have to do it for themselves.

And it’s the hard way,
and this is not trivial,

but in this case, it’s the only way.

Now, as it turns out,
this is not that alien of a problem.

We just don’t build anything this way.

People don’t build anything this way.

But if you look around –
and there’s examples everywhere –

Mother Nature builds everything this way.

Everything is built from the bottom up.

You can go to the beach,

you’ll find these simple organisms
that use proteins –

basically molecules –

to template what is essentially sand,

just plucking it from the sea

and building these extraordinary
architectures with extreme diversity.

And nature’s not crude like us,
just hacking away.

She’s elegant and smart,

building with what’s available,
molecule by molecule,

making structures with a complexity

and a diversity
that we can’t even approach.

And she’s already at the nano.

She’s been there
for hundreds of millions of years.

We’re the ones that are late to the party.

So we decided that we’re going
to use the same tool that nature uses,

and that’s chemistry.

Chemistry is the missing tool.

And chemistry works in this case

because these nanoscale objects
are about the same size as molecules,

so we can use them
to steer these objects around,

much like a tool.

That’s exactly what we’ve done in our lab.

We’ve developed chemistry
that goes into the pile of dust,

into the pile of nanoparticles,

and pulls out exactly the ones we need.

Then we can use chemistry to arrange
literally billions of these particles

into the pattern
we need to build circuits.

And because we can do that,

we can build circuits
that are many times faster

than what anyone’s been able
to make using nanomaterials before.

Chemistry’s the missing tool,

and every day our tool gets sharper
and gets more precise.

And eventually –

and we hope this is
within a handful of years –

we can deliver on one
of those original promises.

Now, computing is just one example.

It’s the one that I’m interested in,
that my group is really invested in,

but there are others
in renewable energy, in medicine,

in structural materials,

where the science is going to tell you
to move towards the nano.

That’s where the biggest benefit is.

But if we’re going to do that,

the scientists of today and tomorrow
are going to need new tools –

tools just like the ones I described.

And they will need chemistry.
That’s the point.

The beauty of science is that
once you develop these new tools,

they’re out there.

They’re out there forever,

and anyone anywhere
can pick them up and use them,

and help to deliver
on the promise of nanotechnology.

Thank you so much for your time.
I appreciate it.

(Applause)

译者:Leslie Gauthier
审稿人:Joanna Pietrulewicz

让我们想象一个雕塑家正在
建造一座雕像,

只是用他的凿子凿开。

米开朗基罗用这种优雅的方式
来描述它,他说:

“每一块石头
里面都有一个雕像,

雕刻家的任务是发现它。”

但如果他
朝相反的方向工作呢?

不是来自一块坚固的石头,

而是来自一堆灰尘,它们

以某种方式将数百万个这些颗粒粘合
在一起形成了一座雕像。

我知道这是一个荒谬的想法。

这可能是不可能的。

从一堆灰尘中得到雕像的唯一方法

是雕像自己建造——

如果我们能以某种方式迫使数以百万计
的这些粒子聚集

在一起形成雕像。

现在,尽管听起来很奇怪

,但这几乎正是
我在实验室中研究的问题。

我不是用石头

建造的,我是用纳米材料建造的。

它们是不可思议的小而
迷人的小物件。

它们太小了,如果这个控制器
是一个纳米粒子,

一根人的头发就会
有整个房间那么大。

它们是我们称之为纳米技术的领域的核心

,我相信我们都听说过

,我们都听说过
它将如何改变一切。

当我还是一名研究生时,


是从事纳米技术工作的最激动人心的时刻之一。

科学突破
一直在发生。

会议很热闹,

有大量资金
从资助机构涌入。

原因是

当物体变得非常小时,

它们会受到一组不同
的物理学的支配,这些物理学支配着普通物体,

比如我们与之交互的物体。

我们称之为物理量子力学。

它告诉你的是
,你

可以通过
对它们进行看似微小的改变来精确地调整它们的行为,

比如添加或移除
少量原子,

或者扭曲材料。

这就像这个终极工具包。

你真的觉得自己被赋予了权力;
你觉得你可以做任何事情。

我们正在这样做

——我指的是我整整
一代的研究生。

我们试图
使用纳米材料制造超快的计算机。

我们正在构建

有朝一日可以进入你的身体
并发现和对抗疾病的量子点。

甚至有一些团体
试图使用碳纳米管制造通往太空的电梯

你可以查一下,确实如此。

无论如何,我们认为它会影响

科学和技术的所有部分,
从计算到医学。

我不得不承认,

我喝了所有的 Kool-Aid。

我的意思是,每一滴。

但那是 15 年前的事了,

而且——

完成了奇妙的科学,
非常重要的工作。

我们学到了很多。

我们永远无法将
这种科学转化为新技术——

转化为
能够真正影响人们的技术。

原因是,这些纳米材料——

它们就像一把双刃剑。

使
它们如此有趣的同一件事-

它们的小尺寸-

也使它们无法使用。

这就像试图
用一堆灰尘建造一座雕像。

而且我们只是没有足够小的工具
来使用它们。

但即使我们这样做了,
也没关系,

因为我们无法
将数百万个粒子一个一个地放在一

起来构建一项技术。

所以正因为如此,

所有的承诺
和所有的兴奋

都保持不变:
承诺和兴奋。

我们没有任何
抗病纳米机器人,

没有通往太空的电梯,

而我最感兴趣的是,
没有新型计算。

现在是最后一个,
这是一个非常重要的。

我们只是开始期待

计算进步的步伐将
无限期地继续下去。

我们已经根据这个想法建立了整个经济体。

这种速度之所以存在,

是因为我们能够
将越来越多的设备封装

到计算机芯片上。

随着这些设备变得更小,

它们变得更快,它们消耗更少的功率

并且它们变得更便宜。

正是这种
融合为我们带来了令人难以置信的速度。

举个例子:

如果我拿一台房间大小的电脑
,把三个人送上月球,

然后以某种方式压缩它——

压缩了当时世界上
最伟大的电脑,

所以它
和你的智能手机一样大——

你真正的智能手机

,你花了 300 美元买
的东西,每两年扔掉一次,

会把这东西吹走。

你不会印象深刻的。

它不能
做你的智能手机所做的任何事情。

会很慢,

你不能放任何东西,如果你幸运的话,

你可能会熬过

“行尸走肉”一集的前两分钟
——

(笑声

)关键是进展——
这不是渐进的。

进步是无情的。

这是指数级的。

它年复一年地自我组合

,以至于
如果您将一代技术与下一代技术进行比较

它们几乎无法辨认。

我们有责任
保持这一进展。

我们想在
10、20、30 年后说同样的话:

看看我们
在过去 30 年里做了什么。

然而,我们知道这种进步
可能不会永远持续下去。

事实上,党的那种清盘。

这就像“最后一次喝酒”,对吗?

如果你从幕后看

,从
速度和性能等许多指标来看

,进展已经放缓到停滞不前。

因此,如果我们想让这个聚会继续下去,

我们必须做我们
一直能够做的事情

,那就是创新。

所以我们集团的角色
和我们集团的使命


通过使用碳纳米管进行创新,

因为我们认为它们可以
提供一条继续这一步伐的途径。

他们就像他们的声音一样。

它们是微小的中空
碳原子管

,它们的纳米级尺寸,
即小尺寸,

产生了
这些出色的电子特性。

科学告诉我们,
如果我们可以将它们用于计算,

我们可以看到
性能提高十倍。


就像一步跳过几代技术一样。

因此,我们有它。

我们有这个非常重要的问题

,我们有基本上
是理想的解决方案。

科学在向我们尖叫,

“这是你应该做的
来解决你的问题。”

所以,好吧,让我们开始吧,

让我们这样做。

但你只是
回到那把双刃剑。

这种“理想解决方案”包含
一种无法使用的材料。

我必须安排数十亿个
它们才能制造一个单一的计算机芯片。

这是同样的难题,
就像这个永恒的问题。

在这一点上,我们说,“让我们停下来。

我们不要走同样的路。

让我们找出缺少的东西。

我们没有处理

什么?我们没有做哪些
需要做的事情?”

就像在“教父”中一样,对吧?

当弗雷多背叛他的兄弟迈克尔时,

我们都知道需要做什么。

弗雷多得走了。

(笑声)

但是迈克尔——他推迟了。

好吧,我明白了。

他们的母亲还活着,
这会让她心烦意乱。

我们只是说,

“我们的问题中的弗雷多是什么?”

我们没有处理什么?

我们没有做什么,


需要做什么才能成功?

”答案
是雕像必须自己建造。

我们必须找到一种方法,以某种方式

,迫使、说服
数十亿个这些

粒子聚集在一起 他们自己
进入技术。

我们不能为他们做。
他们必须为自己做

。这是艰难的方式
,这不是微不足道的,

但在这种情况下,这是唯一的方式。

现在,事实证明 ,
这不是一个陌生的问题。

我们只是不以这种方式建造任何东西。

人们不会以这种方式建造任何东西。

但是如果你环顾四周
——到处都有例子——

大自然母亲以这种方式建造一切。

一切 是自下而上建造的。

你可以去海滩,

你会发现这些简单的生物体
,它们使用蛋白质——

基本上是分子——

来模拟本质上是沙子的东西,

只是从海里采摘下来,

用极端的方法建造这些非凡的建筑 多样性

。大自然不像我们那样粗鲁,
只是砍伐。

她优雅而聪明,

健美 用现有的东西,
逐个分子地

制造具有我们甚至无法接近的复杂性

和多样性
的结构。

她已经在纳米了。

她已经存在
了数亿年。

我们是聚会迟到的人。

所以我们决定我们
将使用与大自然相同的工具

,那就是化学。

化学是缺少的工具。

化学在这种情况下起作用,

因为这些纳米级物体
的大小与分子大致相同,

因此我们可以使用它们
来操纵这些物体,

就像工具一样。

这正是我们在实验室所做的。

我们已经开发出化学
物质,可以进入灰尘

堆,纳米粒子堆,

并准确地提取出我们需要的那些。

然后我们可以使用化学将
数十亿个这些粒子

排列成
我们需要构建电路的模式。

而且因为我们可以做到这一点,

我们可以构建比以前任何人使用纳米材料制造的
电路都要快很多倍的电路

化学是缺少的工具,

而且我们的工具每天都变得更锋利
、更精确。

最终

——我们希望这是
在几年内——

我们可以兑现其中
一个最初的承诺。

现在,计算只是一个例子。

这是我感兴趣的
,我的团队真正投资的,


在可再生能源、医学

、结构材料方面还有其他方面

,科学将告诉你
走向纳米。

这就是最大的好处所在。

但如果我们要这样做,

今天和明天的科学家
将需要新的工具——

就像我描述的那些工具。

他们需要化学。
这才是重点。

科学的美妙之处在于,
一旦你开发了这些新工具,

它们就在那里。

它们永远存在

,任何地方的任何人都
可以拿起并使用它们,

并帮助
兑现纳米技术的承诺。

非常感谢您的参与。
我很感激。

(掌声)