What happens when biology becomes technology Christina Agapakis

A briefcase full of poop changed my life.

Ten years ago, I was a graduate student

and I was helping judge
a genetic engineering competition

for undergrads.

There, I met a British artist and designer
named Alexandra Daisy Ginsberg.

She was wearing the white
embroidered polo shirt

of the University of Cambridge team

and holding a silver briefcase,

like the kind that you would imagine
is handcuffed to your wrist.

She gestured over from a quiet corner

and asked me if I wanted to see something.

With a sneaky look,
she opened up the suitcase,

and inside were six glorious,
multicolored turds.

The Cambridge team, she explained,

had spent their summer
engineering the bacteria E. coli

to be able to sense different things
in the environment

and produce a rainbow
of different colors in response.

Arsenic in your drinking water?

This strain would turn green.

She and her collaborator,
the designer James King,

worked with the students and imagined
the different possible scenarios

of how you might use these bacteria.

What if, they asked, you could use them

as a living probiotic drink
and health monitor, all in one?

You could drink the bacteria
and it would live in your gut,

sensing what’s going on,

and then in response to something,

it would be able to produce
a colored output.

Holy shit!

The Cambridge team went on to win

the International Genetically Engineered
Machine competition,

or iGEM for short.

And as for me, those turds
were a turning point.

I am a synthetic biologist,

which is probably a weird term
that most people aren’t familiar with.

It definitely sounds like an oxymoron.

How can biology, something natural,

be synthetic?

How can something artificial be alive?

Synthetic biologists sort of poke holes

in that boundary that we draw between
what is natural and what’s technological.

And every year, iGEM students
from all over the world

spend their summer

trying to engineer biology
to be technology.

They teach bacteria how to play sudoku,

they make multicolored spider silk,

they make self-healing concrete

and tissue printers
and plastic-eating bacteria.

Up until that moment, though,

I was a little bit more concerned
with a different kind of oxymoron.

Just plain old genetic engineering.

The comedian Simon Munnery once wrote

that genetic engineering is actually
insulting to proper engineering.

Genetic engineering is more like throwing
a bunch of concrete and steel in a river

and if somebody can walk across,
you call it a bridge.

And so synthetic biologists
were pretty worried about this,

and worried that genetic engineering
was a little bit more art that science.

They wanted to turn genetic engineering
into a real engineering discipline,

where we could program cells and write DNA

the way that engineers write
software for computers.

That day 10 years ago started me on a path
that gets me to where I am now.

Today, I’m the creative director

at a synthetic biology company
called Ginkgo Bioworks.

“Creative director” is a weird title

for a biotech company
were people try to program life

the way that we program computers.

But that day when I met Daisy,

I learned something about engineering.

I learned that engineering
isn’t really just about equations

and steel and circuits,

it’s actually about people.

It’s something that people do,
and it impacts us.

So in my work,

I try to open up new spaces
for different kinds of engineering.

How can we ask better questions,

and can we have better conversations

about what we want
from the future of technology?

How can we understand the technological

but also social and political
and economic reasons

that GMOs are so polarizing
in our society?

Can we make GMOs that people love?

Can we use biology to make technology
that’s more expansive and regenerative?

I think it starts by recognizing
that we, as synthetic biologists,

are also shaped by a culture
that values “real engineering”

more than any of the squishy stuff.

We get so caught up in circuits
and what happens inside of computers,

that we sometimes lose sight of the magic
that’s happening inside of us.

There is plenty of shitty
technology out there,

but this was the first time
that I imagined poop as technology.

I began to see that synthetic
biology was awesome,

not because we could turn
cells into computers,

but because we could bring
technology to life.

This was technology that was visceral,

an unforgettable vision
of what the future might hold.

But importantly, it was also
framed as the question

“Is this the kind of future
that we actually want?”

We’ve been promised a future of chrome,

but what if the future is fleshy?

Science and science fiction

help us remember
that we’re made of star stuff.

But can it also help us remember
the wonder and weirdness

of being made of flesh?

Biology is us,

it’s our bodies, it’s what we eat.

What happens when biology
becomes technology?

These images are questions,

and they challenge what we think of
as normal and desirable.

And they also show us
that the future is full of choices

and that we could choose differently.

What’s the future of the body, of beauty?

If we change the body,
will we have new kinds of awareness?

And will new kinds of awareness
of the microbial world

change the way that we eat?

The last chapter of my dissertation
was all about cheese that I made

using bacteria that I swabbed
from in between my toes.

I told you that the poop changed my life.

I worked with the smell artist
and researcher Sissel Tolaas

to explore all of the ways
that our bodies and cheese are connected

through smell and therefore microbes.

And we created this cheese

to challenge how we think
about the bacteria

that’s part of our lives

and the bacteria
that we work with in the lab.

We are, indeed, what we eat.

The intersection of biology and technology

is more often told as a story
of transcending our fleshy realities.

If you can upload
your brain to a computer,

you don’t need to poop anymore after all.

And that’s usually a story
that’s told as a good thing, right?

Because computers are clean,
and biology is messy.

Computers make sense and are rational,

and biology is an unpredictable tangle.

It kind of follows from there

that science and technology
are supposed to be rational,

objective

and pure,

and it’s humans that are a total mess.

But like synthetic biologists poke holes

in that line between nature
and technology,

artists, designers and social scientists

showed me that the lines that we draw
between nature, technology and society

are a little bit softer
than we might think.

They challenge us to reconsider
our visions for the future

and our fantasies
about controlling nature.

They show us how our prejudices,
our hopes and our values

are embedded in science and technology

through the questions that we ask
and the choices that we make.

They make visible the ways
that science and technology are human

and therefore political.

What does it mean for us
to be able to control life

for our own purposes?

The artists Oron Catts and Ionat Zurr

made a project
called “Victimless Leather,”

where they engineered
a tiny leather jacket

out of mouse cells.

Is this jacket alive?

What does it take to grow it
and keep it this way?

Is it really victimless?

And what does it mean
for something to be victimless?

The choices that we make

in what we show and what we hide
in our stories of progress,

are often political choices
that have real consequences.

How will genetic technologies
shape the way that we understand ourselves

and define our bodies?

The artist Heather Dewey-Hagborg
made these faces

based on DNA sequences
she extracted from sidewalk litter,

forcing us to ask questions
about genetic privacy,

but also how and whether
DNA can really define us.

How will we fight against
and cope with climate change?

Will we change the way
that we make everything,

using biological materials
that can grow and decay alongside us?

Will we change our own bodies?

Or nature itself?

Or can we change the system
that keeps reinforcing those boundaries

between science, society,
nature and technology?

Relationships that today keep us
locked in these unsustainable patterns.

How we understand and respond to crises

that are natural, technical
and social all at once,

from coronavirus to climate change,

is deeply political,

and science never happens in a vacuum.

Let’s go back in time

to when the first European settlers
arrived in Hawaii.

They eventually brought their cattle
and their scientists with them.

The cattle roamed the hillsides,

trampling and changing
the ecosystems as they went.

The scientists catalogued the species
that they found there,

often taking the last specimen
before they went extinct.

This is the Maui hau kuahiwi,

or the Hibiscadelphus wilderianus,

so named by Gerrit Wilder in 1910.

By 1912, it was extinct.

I found this specimen
in the Harvard University Herbarium,

where it’s housed with five million
other specimens from all over the world.

I wanted to take a piece
of science’s past,

tied up as it was with colonialism,

and all of the embedded ideas

of the way that nature and science
and society should work together,

and ask questions about science’s future.

Working with an awesome team at Ginkgo,

and others at UC Santa Cruz,

we were able to extract
a little bit of the DNA

from a tiny sliver of this plant specimen

and to sequence the DNA inside.

And then resynthesize a possible version

of the genes that made
the smell of the plant.

By inserting those genes into yeast,

we could produce little bits of that smell

and be able to, maybe, smell

a little bit of something
that’s lost forever.

Working again with Daisy
and Sissel Tolaas,

my collaborator on the cheese project,

we reconstructed and composed
a new smell of that flower,

and created an installation
where people could experience it,

to be part of this natural history
and synthetic future.

Ten years ago, I was a synthetic biologist

worried that genetic engineering
was more art than science

and that people were too messy

and biology was too complicated.

Now I use genetic engineering as art

to explore all the different ways
that we are entangled together

and imagine different possible futures.

A fleshy future

is one that does recognize
all those interconnections

and the human realities of technology.

But it also recognizes
the incredible power of biology,

its resilience and sustainability,

its ability to heal and grow and adapt.

Values that are so necessary

for the visions of the futures
that we can have today.

Technology will shape that future,

but humans make technology.

How we decide what that future will be

is up to all of us.

Thank you.

一个装满便便的公文包改变了我的生活。

十年前,我还是一名研究生

,正在帮助评判
一场针对本科生的基因工程竞赛

在那里,我遇到了一位名叫 Alexandra Daisy Ginsberg 的英国艺术家和设计师

她穿着剑桥大学队的白色
刺绣polo衫

,手里拿着一个银色公文包,

就像你想象的那种
被铐在手腕上的那种。

她从一个安静的角落示意过来

,问我是否想看点什么。

她鬼鬼祟祟地
打开行李箱

,里面是六只
五彩斑斓的大便。

她解释说,剑桥团队

花了他们夏天的时间
对大肠杆菌进行工程改造,

以便能够感知
环境中的不同事物

并产生
不同颜色的彩虹作为回应。

饮用水中的砷?

这种菌株会变成绿色。

她和她的合作者
、设计师詹姆斯·金

与学生们一起工作,并想象

了如何使用这些细菌的不同可能场景。

他们问,如果您可以将它们

用作活的益生菌饮料
和健康监测器,一切合二为一呢?

你可以喝下这种细菌
,它会生活在你的肠道中,

感知正在发生的事情,

然后作为对某事的反应,

它能够
产生彩色输出。

天啊!

剑桥团队继续

赢得国际基因工程
机器竞赛,

简称 iGEM。

至于我,那些粪便
是一个转折点。

我是一名合成生物学家,

这可能是
一个大多数人都不熟悉的奇怪术语。

这绝对听起来像一个矛盾的说法。

生物学,自然的东西,怎么

可能是合成的?

人造的东西怎么可能有生命?

合成生物学家

在我们划定的自然与技术之间的界限上挖洞

每年,
来自世界各地的

iGEM 学生都会在暑假中

尝试将生物学设计
为技术。

他们教细菌如何玩数独,

他们制作彩色蜘蛛丝,

他们制作自愈混凝土

和纸巾打印机
以及吃塑料的细菌。

不过,直到那一刻,

我才更
关心另一种矛盾的说法。

只是简单的旧基因工程。

喜剧演员西蒙·芒纳里(Simon Munnery)曾经写道

,基因工程实际上是
对适当工程的侮辱。

基因工程更像是把
一堆混凝土和钢铁扔进河里

,如果有人能走过,
你就称它为桥。

所以合成
生物学家非常担心这一点,

并担心基因工程
更像是一门艺术而不是科学。

他们想把基因工程
变成一门真正的工程学科

,我们可以

像工程师
为计算机编写软件那样对细胞进行编程和编写 DNA。

10 年前的那一天让我踏上了一条通往现在的道路

今天,我是

一家名为 Ginkgo Bioworks 的合成生物学公司的创意总监

“创意总监”

对于一家生物技术公司来说是一个奇怪的头衔,
因为人们试图用

我们编程计算机的方式来编程生活。

但那天当我遇到黛西时,

我学到了一些关于工程学的东西。

我了解到
工程学不仅仅是关于方程式

、钢和电路,

它实际上是关于人的。

这是人们所做的事情
,它影响着我们。

所以在我的工作中,

我尝试
为不同类型的工程开辟新的空间。

我们如何才能提出更好的问题,我们如何

才能更好地

讨论我们想要
从技术的未来中得到什么?

我们如何理解转基因生物在我们的社会中如此两极分化的

技术原因以及社会、政治
和经济原因

我们能制造出人们喜爱的转基因生物吗?

我们可以利用生物学来制造
更广泛和更可再生的技术吗?

我认为首先要认识
到,作为合成生物学家,

我们也受到一种文化的影响,这种文化更
重视“真正的工程”

而不是任何软弱的东西。

我们如此沉迷于电路
和计算机内部发生的事情,

以至于我们有时会
忽视发生在我们内部的魔法。

那里有很多糟糕的
技术,

但这是我第一次
将便便想象成技术。

我开始看到合成
生物学很棒,

不是因为我们可以将
细胞变成计算机,

而是因为我们可以将
技术带入生活。

这是一种发自内心的技术,是

对未来可能发生的令人难忘的愿景。

但重要的是,它也被
框定为

“这是
我们真正想要的那种未来吗?”的问题。

我们已经被承诺过铬的未来,

但如果未来是肉质的呢?

科学和科幻小说

帮助我们
记住我们是由明星组成的。

但它也能帮助我们记住

由肉构成的奇妙和怪异吗?

生物学就是我们,

我们的身体,我们吃的东西。

当生物学变成技术时会发生什么

这些图像是问题

,它们挑战了我们
认为正常和可取的东西。

它们还向我们
表明,未来充满了选择

,我们可以做出不同的选择。

身体,美丽的未来是什么?

如果我们改变身体,
我们会有新的意识吗?

对微生物世界的新认识会

改变我们的饮食方式吗?

我论文的最后一章
是关于

我用脚趾间擦拭的细菌制作的奶酪

我告诉过你,便便改变了我的生活。

我与气味艺术家
和研究员 Sissel Tolaas

合作,
探索我们的身体和奶酪

通过气味和微生物联系在一起的所有方式。

我们创造了这种奶酪

来挑战我们如何看待

我们生活

中的细菌
以及我们在实验室中使用的细菌。

事实上,我们就是我们吃的东西。

生物学和技术的交集

更经常被讲述为一个
超越我们肉体现实的故事。

如果你能把
你的大脑上传到电脑上,

你就不需要再拉屎了。

这通常是一个被
认为是好事的故事,对吧?

因为计算机是干净的,
而生物学是混乱的。

计算机是有意义的并且是理性的,

而生物学是一个不可预测的纠结。

从那里可以

看出,科学和
技术应该是理性的、

客观的

和纯粹的,

而人类才是一团糟。

但就像合成生物学家

在自然和技术之间的界限上戳洞一样,

艺术家、设计师和社会科学家

向我展示了我们
在自然、技术和社会之间划定的界限

比我们想象的要柔和一些。

它们挑战我们重新考虑
我们对未来的愿景

以及我们
对控制自然的幻想。

它们向我们展示了我们的偏见、
我们的希望和我们的价值观

如何

通过我们提出的问题
和我们做出的选择嵌入到科学和技术中。

它们
使科学和技术成为人类

并因此成为政治的方式变得可见。

能够

为自己的目的控制生活对我们意味着什么?

艺术家 Oron Catts 和 Ionat Zurr

制作了一个
名为“Victimless Leather”的项目

,他们用老鼠细胞设计
了一件小皮夹克

这件夹克还活着吗?

怎样才能让它成长
并保持这种状态?

真的没有受害者吗?

没有
受害者意味着什么?

我们在展示什么以及
在我们的进步故事中隐藏什么方面

做出的选择
,通常是具有实际后果的政治选择。

基因技术将如何
塑造我们了解自己

和定义我们身体的方式?

艺术家Heather Dewey-Hagborg

根据
她从人行道垃圾中提取的DNA序列制作了这些面孔,

迫使我们提出
有关遗传隐私的问题

,以及DNA如何以及是否
可以真正定义我们。

我们将如何
应对和应对气候变化?

我们会改变
我们制造一切的方式,

使用
可以与我们一起生长和腐烂的生物材料吗?

我们会改变自己的身体吗?

还是大自然本身?

或者我们可以
改变不断加强

科学、社会、
自然和技术之间界限的系统吗?

今天的关系让我们
陷入了这些不可持续的模式。

我们如何理解和应对从冠状病毒到气候变化

的自然、技术
和社会危机,这在

很大程度上

是政治性的

,科学永远不会在真空中发生。

让我们

回到第一批欧洲定居者
抵达夏威夷的时间。

他们最终带来了他们的牛
和他们的科学家。

牛在山坡上漫游,

边走边践踏和
改变生态系统。

科学家们对
他们在那里发现的物种进行了编目,

经常
在它们灭绝之前采集最后一个标本。

这是 Maui hau kuahiwi,

或 Hibiscadelphus wilderianus,

由 Gerrit Wilder 在 1910 年如此命名。

到 1912 年,它已经灭绝。

我在哈佛大学植物标本馆发现了这个标本

那里收藏着
来自世界各地的 500 万份其他标本。

我想记录
一段科学的过去,

就像它与殖民主义一样,

以及所有关于

自然、科学
和社会应该如何合作的内在观念,

并就科学的未来提出问题。

与 Ginkgo 的一个很棒的团队

以及加州大学圣克鲁斯分校的其他人合作,

我们能够

从这个植物标本的一小片碎片中提取一点 DNA,

并对其内部的 DNA 进行测序。

然后重新合成产生

植物气味的基因的可能版本。

通过将这些基因插入酵母中,

我们可以产生一点点那种气味

,也许还能闻到

一点点
永远消失的东西。

再次与 Daisy

我在奶酪项目上的合作者 Sissel Tolaas 合作,

我们重建并合成
了这种花的新气味,

并创造了一个
人们可以体验它的装置

,成为这个自然历史
和合成未来的一部分。

十年前,我是一名合成生物学家,我

担心基因工程
与其说是科学,不如说是艺术

,人们太杂乱

,生物学太复杂。

现在我将基因工程作为艺术

来探索
我们纠缠在一起的所有不同方式,

并想象不同的可能未来。

一个肉欲的未来

是一个承认
所有这些相互联系

和技术的人类现实的未来。

但它也认识
到生物学的不可思议的力量,

它的复原力和可持续性,

它的治愈、成长和适应能力。

对于我们今天可以拥有的未来愿景而言,这些价值观是如此必要

技术将塑造未来,

但人类制造技术。

我们如何决定未来将是什么

取决于我们所有人。

谢谢你。