How radio telescopes show us unseen galaxies Natasha HurleyWalker

Transcriber: Joseph Geni
Reviewer: Joanna Pietrulewicz

Space, the final frontier.

I first heard these words
when I was just six years old,

and I was completely inspired.

I wanted to explore strange new worlds.

I wanted to seek out new life.

I wanted to see everything
that the universe had to offer.

And those dreams, those words,
they took me on a journey,

a journey of discovery,

through school, through university,

to do a PhD and finally
to become a professional astronomer.

Now, I learned two amazing things,

one slightly unfortunate,

when I was doing my PhD.

I learned that the reality was

I wouldn’t be piloting
a starship anytime soon.

But I also learned that the universe
is strange, wonderful and vast,

actually too vast
to be explored by spaceship.

And so I turned my attention
to astronomy, to using telescopes.

Now, I show you before you
an image of the night sky.

You might see it anywhere in the world.

And all of these stars are part
of our local galaxy, the Milky Way.

Now, if you were to go
to a darker part of the sky,

a nice dark site, perhaps in the desert,

you might see the center
of our Milky Way galaxy

spread out before you,
hundreds of billions of stars.

And it’s a very beautiful image.

It’s colorful.

And again, this is just
a local corner of our universe.

You can see there’s
a sort of strange dark dust across it.

Now, that is local dust

that’s obscuring the light of the stars.

But we can do a pretty good job.

Just with our own eyes, we can explore
our little corner of the universe.

It’s possible to do better.

You can use wonderful telescopes
like the Hubble Space Telescope.

Now, astronomers
have put together this image.

It’s called the Hubble Deep Field,

and they’ve spent hundreds of hours
observing just a tiny patch of the sky

no larger than your thumbnail
held at arm’s length.

And in this image

you can see thousands of galaxies,

and we know that there must be
hundreds of millions, billions of galaxies

in the entire universe,

some like our own and some very different.

So you think, OK, well,
I can continue this journey.

This is easy. I can just
use a very powerful telescope

and just look at the sky, no problem.

It’s actually really missing out
if we just do that.

Now, that’s because
everything I’ve talked about so far

is just using the visible spectrum,
just the thing that your eyes can see,

and that’s a tiny slice,

a tiny, tiny slice
of what the universe has to offer us.

Now, there’s also two very important
problems with using visible light.

Not only are we missing out
on all the other processes

that are emitting other kinds of light,

but there’s two issues.

Now, the first is that dust
that I mentioned earlier.

The dust stops the visible light
from getting to us.

So as we look deeper
into the universe, we see less light.

The dust stops it getting to us.

But there’s a really strange problem
with using visible light

in order to try and explore the universe.

Now take a break for a minute.

Say you’re standing on a corner,
a busy street corner.

There’s cars going by.

An ambulance approaches.

It has a high-pitched siren.

(Imitates a siren passing by)

The siren appeared to change in pitch

as it moved towards and away from you.

The ambulance driver did not change
the siren just to mess with you.

That was a product of your perception.

The sound waves,
as the ambulance approached,

were compressed,

and they changed higher in pitch.

As the ambulance receded,
the sound waves were stretched,

and they sounded lower in pitch.

The same thing happens with light.

Objects moving towards us,

their light waves are compressed
and they appear bluer.

Objects moving away from us,

their light waves are stretched,
and they appear redder.

So we call these effects
blueshift and redshift.

Now, our universe is expanding,

so everything is moving away
from everything else,

and that means
everything appears to be red.

And oddly enough, as you look
more deeply into the universe,

more distant objects
are moving away further and faster,

so they appear more red.

So if I come back to the Hubble Deep Field

and we were to continue
to peer deeply into the universe

just using the Hubble,

as we get to a certain distance away,

everything becomes red,

and that presents something of a problem.

Eventually, we get so far away

everything is shifted into the infrared

and we can’t see anything at all.

So there must be a way around this.

Otherwise, I’m limited in my journey.

I wanted to explore the whole universe,

not just whatever I can see,
you know, before the redshift kicks in.

There is a technique.

It’s called radio astronomy.

Astronomers have been
using this for decades.

It’s a fantastic technique.

I show you the Parkes Radio Telescope,
affectionately known as “The Dish.”

You may have seen the movie.

And radio is really brilliant.

It allows us to peer much more deeply.

It doesn’t get stopped by dust,

so you can see everything in the universe,

and redshift is less of a problem

because we can build receivers
that receive across a large band.

So what does Parkes see when we turn it
to the center of the Milky Way?

We should see something fantastic, right?

Well, we do see something interesting.

All that dust has gone.

As I mentioned, radio goes
straight through dust, so not a problem.

But the view is very different.

We can see that the center
of the Milky Way is aglow,

and this isn’t starlight.

This is a light called
synchrotron radiation,

and it’s formed from electrons
spiraling around cosmic magnetic fields.

So the plane is aglow with this light.

And we can also see
strange tufts coming off of it,

and objects which don’t appear to line up

with anything that we can see
with our own eyes.

But it’s hard to really
interpret this image,

because as you can see,
it’s very low resolution.

Radio waves have a wavelength that’s long,

and that makes their resolution poorer.

This image is also black and white,

so we don’t really know
what is the color of everything in here.

Well, fast-forward to today.

We can build telescopes

which can get over these problems.

Now, I’m showing you here an image
of the Murchison Radio Observatory,

a fantastic place
to build radio telescopes.

It’s flat, it’s dry,

and most importantly, it’s radio quiet:

no mobile phones, no Wi-Fi, nothing,

just very, very radio quiet,

so a perfect place
to build a radio telescope.

Now, the telescope that I’ve been
working on for a few years

is called the Murchison Widefield Array,

and I’m going to show you
a little time lapse of it being built.

This is a group of undergraduate
and postgraduate students

located in Perth.

We call them the Student Army,

and they volunteered their time
to build a radio telescope.

There’s no course credit for this.

And they’re putting together
these radio dipoles.

They just receive at low frequencies,
a bit like your FM radio or your TV.

And here we are deploying them
across the desert.

The final telescope
covers 10 square kilometers

of the Western Australian desert.

And the interesting thing is,
there’s no moving parts.

We just deploy these little antennas

essentially on chicken mesh.

It’s fairly cheap.

Cables take the signals

from the antennas

and bring them
to central processing units.

And it’s the size of this telescope,

the fact that we’ve built it
over the entire desert

that gives us a better
resolution than Parkes.

Now, eventually all those cables
bring them to a unit

which sends it off
to a supercomputer here in Perth,

and that’s where I come in.

(Sighs)

Radio data.

I have spent the last five years

working with very difficult,
very interesting data

that no one had really looked at before.

I’ve spent a long time calibrating it,

running millions of CPU hours
on supercomputers

and really trying to understand that data.

And with this telescope,

with this data,

we’ve performed a survey
of the entire southern sky,

the GaLactic and Extragalactic
All-sky MWA Survey,

or GLEAM, as I call it.

And I’m very excited.

This survey is just about to be published,
but it hasn’t been shown yet,

so you are literally the first people

to see this southern survey
of the entire sky.

So I’m delighted to share with you
some images from this survey.

Now, imagine you went to the Murchison,

you camped out underneath the stars

and you looked towards the south.

You saw the south’s celestial pole,

the galaxy rising.

If I fade in the radio light,

this is what we observe with our survey.

You can see that the galactic plane
is no longer dark with dust.

It’s alight with synchrotron radiation,

and thousands of dots are in the sky.

Our large Magellanic Cloud,
our nearest galactic neighbor,

is orange instead
of its more familiar blue-white.

So there’s a lot going on in this.
Let’s take a closer look.

If we look back
towards the galactic center,

where we originally saw the Parkes image
that I showed you earlier,

low resolution, black and white,

and we fade to the GLEAM view,

you can see the resolution
has gone up by a factor of a hundred.

We now have a color view of the sky,

a technicolor view.

Now, it’s not a false color view.

These are real radio colors.

What I’ve done is I’ve colored
the lowest frequencies red

and the highest frequencies blue,

and the middle ones green.

And that gives us this rainbow view.

And this isn’t just false color.

The colors in this image
tell us about the physical processes

going on in the universe.

So for instance, if you look
along the plane of the galaxy,

it’s alight with synchrotron,

which is mostly reddish orange,

but if we look very closely,
we see little blue dots.

Now, if we zoom in,

these blue dots are ionized plasma

around very bright stars,

and what happens
is that they block the red light,

so they appear blue.

And these can tell us
about these star-forming regions

in our galaxy.

And we just see them immediately.

We look at the galaxy,
and the color tells us that they’re there.

You can see little soap bubbles,

little circular images
around the galactic plane,

and these are supernova remnants.

When a star explodes,

its outer shell is cast off

and it travels outward into space
gathering up material,

and it produces a little shell.

It’s been a long-standing
mystery to astronomers

where all the supernova remnants are.

We know that there must be a lot
of high-energy electrons in the plane

to produce the synchrotron
radiation that we see,

and we think they’re produced
by supernova remnants,

but there don’t seem to be enough.

Fortunately, GLEAM is really, really
good at detecting supernova remnants,

so we’re hoping to have
a new paper out on that soon.

Now, that’s fine.

We’ve explored our little local universe,

but I wanted to go deeper,
I wanted to go further.

I wanted to go beyond the Milky Way.

Well, as it happens, we can see a very
interesting object in the top right,

and this is a local radio galaxy,

Centaurus A.

If we zoom in on this,

we can see that there are
two huge plumes going out into space.

And if you look right in the center
between those two plumes,

you’ll see a galaxy just like our own.

It’s a spiral. It has a dust lane.

It’s a normal galaxy.

But these jets
are only visible in the radio.

If we looked in the visible,
we wouldn’t even know they were there,

and they’re thousands of times larger
than the host galaxy.

What’s going on?
What’s producing these jets?

At the center of every galaxy
that we know about

is a supermassive black hole.

Now, black holes are invisible.
That’s why they’re called that.

All you can see is the deflection
of the light around them,

and occasionally, when a star
or a cloud of gas comes into their orbit,

it is ripped apart by tidal forces,

forming what we call an accretion disk.

The accretion disk
glows brightly in the x-rays,

and huge magnetic fields
can launch the material into space

at nearly the speed of light.

So these jets are visible in the radio

and this is what we pick up in our survey.

Well, very well, so we’ve seen
one radio galaxy. That’s nice.

But if you just look
at the top of that image,

you’ll see another radio galaxy.

It’s a little bit smaller,
and that’s just because it’s further away.

OK. Two radio galaxies.

We can see this. This is fine.

Well, what about all the other dots?

Presumably those are just stars.

They’re not.

They’re all radio galaxies.

Every single one of the dots in this image

is a distant galaxy,

millions to billions of light-years away

with a supermassive
black hole at its center

pushing material into space
at nearly the speed of light.

It is mind-blowing.

And this survey is even larger
than what I’ve shown here.

If we zoom out to
the full extent of the survey,

you can see I found 300,000
of these radio galaxies.

So it’s truly an epic journey.

We’ve discovered all of these galaxies

right back to the very first
supermassive black holes.

I’m very proud of this,
and it will be published next week.

Now, that’s not all.

I’ve explored the furthest reaches
of the galaxy with this survey,

but there’s something
even more in this image.

Now, I’ll take you right back
to the dawn of time.

When the universe formed,
it was a big bang,

which left the universe
as a sea of hydrogen,

neutral hydrogen.

And when the very first stars
and galaxies switched on,

they ionized that hydrogen.

So the universe went
from neutral to ionized.

That imprinted a signal all around us.

Everywhere, it pervades us,

like the Force.

Now, because that happened so long ago,

the signal was redshifted,

so now that signal
is at very low frequencies.

It’s at the same frequency as my survey,

but it’s so faint.

It’s a billionth the size
of any of the objects in my survey.

So our telescope may not be quite
sensitive enough to pick up this signal.

However, there’s a new radio telescope.

So I can’t have a starship,

but I can hopefully have

one of the biggest
radio telescopes in the world.

We’re building the Square Kilometre Array,
a new radio telescope,

and it’s going to be a thousand
times bigger than the MWA,

a thousand times more sensitive,
and have an even better resolution.

So we should find
tens of millions of galaxies.

And perhaps, deep in that signal,

I will get to look upon the very first
stars and galaxies switching on,

the beginning of time itself.

Thank you.

(Applause)

抄写员:Joseph
Geni 审稿人:Joanna Pietrulewicz

Space,最后的前沿。

我在六岁的时候第一次听到这些话

,我完全受到了启发。

我想探索陌生的新世界。

我想寻找新的生活。

我想看看
宇宙所提供的一切。

那些梦想,那些话
,带我踏上了一段旅程,

一段发现之旅,

通过学校,通过大学,

攻读博士学位,
最后成为一名专业的天文学家。

现在,当我攻读博士学位时,我学到了两件令人惊奇的事情,

一件有点不幸

我了解到现实是

我不会
很快驾驶星际飞船。

但我也了解到,宇宙
是奇异的、奇妙的、浩瀚的,

其实浩瀚
到宇宙飞船无法探索。

所以我把注意力
转向天文学,转向使用望远镜。

现在,我向您展示
夜空的图像。

你可能会在世界任何地方看到它。

所有这些恒星
都是我们当地银河系的一部分,银河系。

现在,如果你
要去天空较暗的地方,

一个不错的黑暗地点,也许在沙漠中,

你可能会看到
我们银河系的中心

在你面前展开,
数千亿颗恒星。

这是一个非常漂亮的图像。

它是五颜六色的。

再说一次,这只是
我们宇宙的一个局部角落。

你可以看到它上面有
一种奇怪的黑色尘埃。

现在,那是局部

尘埃遮住了星星的光。

但我们可以做得很好。

只要用我们自己的眼睛,我们就可以探索
我们宇宙的小角落。

有可能做得更好。

您可以使用
像哈勃太空望远镜这样出色的望远镜。

现在,天文学家
将这张照片拼凑在一起。

它被称为哈勃深场

,他们已经花费了数百个小时来
观察天空中的一小片区域,它的

大小不比你一臂远的缩略图大

而在这张图片中

你可以看到成千上万个星系

,我们知道整个宇宙中肯定有
数亿、数十亿个

星系,

有的像我们自己的,有的非常不同。

所以你想,好吧,好吧,
我可以继续这个旅程。

这很简单。 我可以
用一个非常强大的

望远镜看天空,没问题。

如果我们只是这样做,实际上真的错过了。

现在,那是因为
到目前为止我所谈论的一切

都只是使用可见光谱,
只是你的眼睛可以看到的

东西,这是宇宙必须提供给我们的一小部分

,一小部分

现在,使用可见光还有两个非常重要的
问题。

我们不仅错过了

发射其他类型光的所有其他过程,

而且还有两个问题。

现在,第一个
是我之前提到的灰尘。

灰尘阻止可见光
到达我们。

因此,当我们更深入地观察
宇宙时,我们看到的光就更少了。

灰尘阻止它到达我们身边。

但是
使用

可见光来尝试探索宇宙存在一个非常奇怪的问题。

现在休息一分钟。

假设你站在一个角落,
一个繁忙的街角。

有车经过。

一辆救护车接近。

它有一个高音警报器。

(模仿路过

的警笛声)警笛声似乎在

向您靠近和远离您时改变了音调。

救护车司机并没有
为了惹你而改变警报器。

那是你感知的产物。

随着救护车的靠近,声波

被压缩

,音调变高。

随着救护车的后退
,声波被拉长

,音调越来越低。

同样的事情也发生在光上。

向我们移动的物体,

它们的光波被压缩
并且看起来更蓝。

远离我们的物体,

它们的光波被拉伸
,它们看起来更红。

所以我们称这些效应为
蓝移和红移。

现在,我们的宇宙正在膨胀,

所以一切都在
远离其他一切

,这意味着
一切看起来都是红色的。

奇怪的是,当你
更深入地观察宇宙时,

更远的
物体移动得越来越快,

所以它们看起来更红。

因此,如果我回到哈勃深场

,我们继续
使用哈勃深入观察

宇宙,

当我们到达一定距离时,

一切都会变成红色

,这就带来了一些问题。

最终,我们离得太远,

一切都被转移到红外线中

,我们什么也看不见。

所以必须有办法解决这个问题。

否则,我的旅程将受到限制。 在红移开始之前,

我想探索整个宇宙,

而不仅仅是我能看到的任何东西

有一种技术。

它被称为射电天文学。

天文学家
几十年来一直在使用它。

这是一项了不起的技术。

我给你看帕克斯射电望远镜,被
亲切地称为“盘子”。

你可能看过这部电影。

收音机真的很棒。

它使我们能够更深入地观察。

它不会被尘埃阻挡,

所以你可以看到宇宙中的一切

,红移不是问题,

因为我们可以构建
接收大波段的接收器。

那么当我们把它转向银河系的中心时,帕克斯看到了什么?

我们应该看到一些很棒的东西,对吧?

好吧,我们确实看到了一些有趣的东西。

所有的灰尘都消失了。

正如我所提到的,收音机
直接穿过灰尘,所以不是问题。

但看法却大不相同。

我们可以看到银河系的中心
是发光的

,这不是星光。

这是一种称为
同步辐射的光

,它是由
围绕宇宙磁场旋转的电子形成的。

所以飞机被这种光照亮了。

我们还可以看到
奇怪的簇从它上面脱落,

以及看起来

与我们亲眼看到的任何东西都不对齐的物体

但很难真正
解释这张图片,

因为如您所见,
它的分辨率非常低。

无线电波的波长很长

,这使得它们的分辨率更差。

这张图片也是黑白的,

所以我们真的不
知道这里所有东西的颜色是什么。

嗯,快进到今天。

我们可以建造

能够克服这些问题的望远镜。

现在,我在这里向您展示
默奇森射电天文台的图像,这

是一个
建造射电望远镜的好地方。

它平坦,干燥

,最重要的是,它的无线电安静:

没有手机,没有 Wi-Fi,什么都没有,

只是非常非常安静,

因此是
建造射电望远镜的理想场所。

现在,我已经研究了几年的望远镜

被称为默奇森宽场阵列

,我将向你展示
它建造过程中的一点时间流逝。

这是一组位于珀斯的本科生
和研究生

我们称他们为学生军

,他们自愿抽出
时间建造射电望远镜。

这没有课程学分。

他们正在把
这些无线电偶极子放在一起。

它们只是接收低频,
有点像您的 FM 收音机或电视。

在这里,我们将它们
部署在沙漠中。

最终的望远镜
覆盖了 10 平方公里

的西澳大利亚沙漠。

有趣的是,
没有移动部件。

我们只是将这些小天线

基本上部署在鸡网上。

它相当便宜。

电缆

从天线接收信号

并将它们
带到中央处理单元。

正是这台望远镜的大小

,我们
在整个沙漠

上建造它的事实给了我们
比帕克斯更好的分辨率。

现在,最终所有这些电缆都
将它们带到一个单元,该单元将

其发送
到珀斯的一台超级计算机

,这就是我进来的地方。

(叹气)

无线电数据。

在过去的五年里,我一直在

处理非常困难、
非常有趣的数据

,这些数据以前没有人真正看过。

我花了很长时间校准它,在超级计算机上

运行数百万个 CPU 小时

并真正尝试理解这些数据。

有了这台望远镜,

有了这些数据,

我们
对整个南部天空进行了调查

,银河和河外
全天空 MWA 调查,

或 GLEAM,我称之为。

我很兴奋。

这项调查即将发布,
但尚未显示,

因此您实际上是第一个

看到整个天空南部调查
的人。

因此,我很高兴与您分享
本次调查中的一些图片。

现在,想象你去了默奇森,

你在星空下露营

,你向南看。

你看到了南方的天极

,银河升起。

如果我在无线电灯中消失,

这就是我们在调查中观察到的。

你可以看到银河
平面不再充满灰尘。

它因同步辐射而着火,

天空中有数千个点。

我们的大麦哲伦星云,
我们最近的银河系邻居,

是橙色的,而
不是更熟悉的蓝白色。

所以在这方面发生了很多事情。
让我们仔细看看。

如果我们回头看
银河系中心,

在那里我们最初看到了
我之前给你看的帕克斯图像,

低分辨率,黑白,

然后我们淡入 GLEAM 视图,

你可以看到
分辨率提高了 1 倍 百。

我们现在有了天空的彩色视图

,彩色视图。

现在,这不是假彩色视图。

这些是真正的收音机颜色。

我所做的是
将最低频率的红色

和最高频率的蓝色

和中间的绿色着色。

这给了我们彩虹般的景色。

这不仅仅是假色。

这张图片中的颜色
告诉我们

宇宙中正在发生的物理过程。

举个例子,如果你
沿着银河系的平面看

,它被同步加速器点亮,

大部分是红橙色,

但如果我们仔细观察,
我们会看到小蓝点。

现在,如果我们放大,

这些蓝点是

非常明亮的恒星周围的电离等离子体

,发生的事情
是它们阻挡了红光,

所以它们看起来是蓝色的。

这些可以告诉我们银河系
中这些恒星形成

区域。

我们只是立即看到它们。

我们看着银河
,颜色告诉我们它们就在那里。

你可以看到小肥皂泡,

银河平面周围的小圆形图像

,这些都是超新星遗迹。

当一颗恒星爆炸时,

它的外壳会脱落

,它会向外传播到太空中
收集物质,

并产生一个小壳。

对于天文学家来说

,所有超新星遗迹的位置一直是个谜。

我们知道平面上一定有
很多高能电子,

才能
产生我们看到的同步辐射

,我们认为它们是
由超新星遗迹产生的,

但似乎还不够。

幸运的是,GLEAM 非常非常
擅长探测超新星遗迹,

所以我们希望很快能有
一篇关于这方面的新论文。

现在,没关系。

我们已经探索了我们当地的小宇宙,

但我想更深入,
我想更进一步。

我想超越银河系。

好吧,碰巧,我们可以在右上角看到一个非常
有趣的物体

,这是一个本地射电星系,

半人马座 A。

如果我们放大它,

我们可以看到有
两个巨大的羽流进入太空。

如果你
在这两个羽流之间的中心看,

你会看到一个和我们自己一样的星系。

这是一个螺旋。 它有一条尘土通道。

这是一个普通的星系。

但这些喷气
机只能在无线电中看到。

如果我们观察可见光,
我们甚至不会知道它们在那里,

而且它们
比宿主星系大数千倍。

这是怎么回事?
是什么产生了这些喷气式飞机?

我们所知道的每个星系的中心

都有一个超大质量黑洞。

现在,黑洞是看不见的。
这就是为什么他们被称为。

你所能看到的只是
它们周围光线的偏转

,偶尔,当一颗恒星
或一团气体进入它们的轨道时,

它会被潮汐力撕裂,

形成我们所谓的吸积盘。

吸积盘
在 X 射线下发出明亮的光

,巨大的磁场
可以将这种物质

以接近光速的速度发射到太空中。

所以这些喷气机在无线电中是可见的

,这就是我们在调查中发现的。

嗯,很好,所以我们已经看到了
一个射电星系。 那很好。

但如果你
只看那幅图像的顶部,

你会看到另一个射电星系。

它有点小
,那只是因为它更远。

行。 两个射电星系。

我们可以看到这一点。 这可以。

那么,所有其他点呢?

大概这些只是明星。

他们不是。

它们都是射电星系。

这张图片中的每一个点

都是一个遥远的星系,距离

我们数百万到数十亿光年,其中心

有一个超大质量
黑洞,以接近光速的速度

将物质推入太空

这是令人兴奋的。

这个调查甚至
比我在这里展示的还要大。

如果我们缩小
到整个调查范围,

你可以看到我发现了 300,000
个这些射电星系。

所以这真的是一次史诗般的旅程。

我们发现所有这些星系

都可以追溯到第一个
超大质量黑洞。

我为此感到非常自豪
,它将在下周发布。

现在,这还不是全部。

通过这次调查,我已经探索了银河系最远的地方,


这张图片中还有更多东西。

现在,我将带你
回到时间的黎明。

宇宙形成时
,是一次大爆炸

,留下的宇宙
是氢海,

中性氢。

当第一批恒星
和星系开启时,

它们会将氢离子化。

所以宇宙
从中性变成了电离。

这在我们周围留下了一个信号。

它无处不在,

就像原力一样遍及我们。

现在,因为那发生在很久以前

,信号发生了红移,

所以现在信号
的频率非常低。

它与我的调查频率相同,

但它是如此微弱。

它是
我调查中任何物体的十亿分之一。

所以我们的望远镜可能
不够灵敏,无法接收到这个信号。

然而,有一个新的射电望远镜。

所以我不能拥有星际飞船,

但我希望拥有

世界上最大的
射电望远镜之一。

我们正在建造平方公里阵列,
一个新的射电望远镜

,它将
比 MWA

大一千倍,灵敏度高一千倍,
并且具有更好的分辨率。

所以我们应该找到
数千万个星系。

也许,在那个信号的深处,

我会看到第一批
恒星和星系的开启,

时间本身的开始。

谢谢你。

(掌声)