A prosthetic eye to treat blindness Sheila Nirenberg

I study how the brain processes

information that is how it takes

information in from the outside world

and converts it into patterns of

electrical activity and then how it uses

those patterns to allow you to do things

to see to hear to reach for an object so

I’m really a basic scientist not a

clinician but in the last year and a

half I’ve started to switch over to use

what we’ve been learning about these

patterns of activity to develop

prosthetic devices and what I wanted to

do today is show you an example of this

it’s really our first foray into this

it’s the development of a prosthetic

device for treating blindness okay so

let me start in on the problem there are

ten million people in the US and many

more worldwide who are blind or facing

blindness due to diseases of the retina

diseases like macular degeneration and

there’s little that can be done for them

there are some drug treatments but

they’re only effective on a small

fraction of the population and so for

the vast majority of patients their best

hope for regaining sight is through

prosthetic devices the problem is that

current prosthetics don’t work very well

they’re still very limited in the vision

that they can provide and so you know

for example with these devices patients

can see simple things like bright lights

and high contrast edges not very much

more so nothing nothing close to normal

vision has been possible so what I’m

going to tell you about today is a

device that we’ve been working on that

that I think has the potential to make a

difference to be much more effective and

what I wanted to do is show you how it

works okay so let me back up a little

bit and show you how a normal retina

works first so you can see the problem

that we’re trying to solve here you have

a retina so you have an image a retina

and a brain so when you look at

something like this image of this baby’s

face it goes into your eye and it lands

on your retina on the front end cells

here the photoreceptors then what

happens is the retinal circuitry the

middle part goes to work on it

and what it does is it it performs

operations on and it extracts

information from it and it converts that

information into a code and the code is

in the form of these patterns of

electrical pulses that get sent up to

the brain and so the key thing is that

the image ultimately gets converted into

a code and when I say coda I do

literally mean code like this pattern of

is here actually means baby’s face and

so when the brain gets this pattern of

pulses it knows that what was out there

was a baby’s face and if it got a

different pattern it would know that

what was out there was say a dog or

another pattern would be a house anyway

you get the idea and of course in real

life it’s all dynamic meaning that it’s

changing all the time so the patterns of

pulses are changing all the time because

the world you’re looking at is is

changing all the time too so you know

it’s sort of a complicated thing you

have these patterns of pulses coming out

of your eye every millisecond telling

your brain what it is that you’re seeing

okay so what happens when a person gets

a retinal degenerative disease like

macular degeneration what happens this

is that the frontend cells die the

photoreceptors die and over time all the

cells and the circuits that are

connected to them they die - until the

only things that you have left are these

cells here the output cells the ones

that send the signals to the brain but

because of all that degeneration they

aren’t sending any signals anymore they

aren’t getting any input so the person’s

brain no longer gets any visual

information that is he or she is blind

so a solution to the problem then would

be to build a device that could mimic

the actions of that front-end circuitry

and said signals to the retinas output

cells then they can go back to doing

their normal job of sending signals to

the brain so this is what we’ve been

working on and and this is what our

prosthetic does so it consists of two

parts what we call an encoder and a

transducer and so the encoder does just

what I was saying it mimics the actions

of the front-end circuitry so it takes

images in and it converts them into the

retinas code and then the transducer

then makes the output cells send the

code on up to the brain and the result

is a retinal prosthetic that can produce

normal retinal output so a completely

blind retina even one with no front end

circuitry at all no photoreceptors can

now send out normal signal signals that

the brain can understand so no other

device has been able to do this okay so

I just want to take it you know a

sentence or two to say something about

the encoder and what it’s doing because

it’s really the key part and it’s sort

of interesting and kind of cool not sure

cool is really the right word but

know what I mean so what it’s doing is

it’s replacing the retinal circuitry

really the guts of the retinal circuitry

with a set of equations a set of

equations that we can implement on a

chip so it’s just math in other words

we’re not literally replacing the

components of the retina it’s not like

we’re making a little mini device for

each of the different cell types we’ve

just like abstracted what the what the

retinas doing with a set of equations

and so in a way the equations are

serving as sort of a codebook an image

comes in goes through the set of

equations and outcomes streams of

electrical pulses just like a normal

retina would produce okay so now let me

put my money where my mouth is and show

you that we can actually produce normal

output and what the what the

implications of this are okay so here

are three sets of firing patterns the

top ones from a normal animal the middle

ones from a blind animal that’s been

treated with this encoder transducer

device and the bottom ones from a blind

animal treated with a standard

prosthetic so the bottom one is the

state-of-the-art device that’s out there

right now which is basically made up of

light detectors but no encoder so what

we did was we presented movies of you

know everyday things people babies park

benches you know regular things

happening and we record the responses

from the retinas of these three groups

of animals just to orient you each box

is showing the firing patterns of

several cells and just as in the

previous slides each row is a different

cell and I just made the pulses a little

bit smaller and thinner so I could show

you like a long stretch of data okay so

as you can see the firing patterns from

the blind animal treated with the

encoder transducer really do very

closely match the normal firing patterns

and it’s not perfect but but it’s pretty

good and the blind animal treated with

the standard prosthetic the responses

really don’t and so with the standard

method the cells do fire

they just don’t fire in the normal

firing patterns because they don’t have

the right code how important is this

like what’s the what’s the potential

impact and a patient’s ability to see so

I’m just going to show you one one

bottom line experiment that answers is

and of course I got a lot of other data

so if you’re interested I’m happy to

show to show more okay so the experiment

is called a reconstruction experiment so

what we did is we took a moment in time

from these recordings and asked what was

the retinas seeing at that moment can we

reconstruct what the retina was seeing

from the responses from the firing

patterns so when we did this for

responses from from the standard method

and from from our encoder and transducer

so let me show you and I’m going to

start with a standard method first okay

so you can see that it’s pretty limited

and because the firing patterns aren’t

in the right code they’re very limited

in what they can tell you about what’s

out there so you can see that there’s

something there but it’s not so clear

what that something is

and this just sort of circles back to

what I was saying in the beginning that

with a standard method patients can see

high contrast edges they can see light

but it doesn’t easily go further than

that okay so what was the image it was a

baby’s face okay so what about with our

approach adding the code and you can see

that it’s much better not only can you

tell that it’s the baby’s face but you

can tell that it’s this baby’s face

which is a really challenging task okay

so on the left is the encoder alone and

on the right is from an actual blind

retina to the encoder and the transducer

but the key one really is the encoder

alone because we can team up the encoder

with a different transducer this was

just actually the first one that we

tried I want to just wanted to say

something about the standard method when

this first came out it was just a really

exciting thing you know the idea that

you could even make a blind retina

respond at all but there was this this

this limiting factor the issue of the

code and how to make the cells respond

that produce normal responses and so

this was our contribution okay so now I

just want to wrap up and as I was

mentioning earlier of course I have a

lot of other data if you’re interested

but I just wanted to give this sort of

basic idea that this idea that of being

able to communicate with the brain in

its language and the potential power of

being able to do that so it’s different

from the motor prosthetics where you’re

communicating from the brain to to a

device here we have to communicate from

the outside world into the brain and be

understood and be understood by the

brain okay and then the last thing I

wanted to sort of say really is that is

to emphasize that the idea generalizes

so the same strategy that we use to find

the code for the retina we can also use

to find the code for other areas for

like for example the auditory system in

the motor system so for treating

deafness and for and for motor disorders

so just the same way that we were able

to jump over the you know the damaged

circuitry and the retina to get to the

retinas output cells we can jump over

the damaged circuitry in the in the

cochlea to get the auditory nerve or

jump over damaged areas and the cortex

in the motor cortex to bridge the gap

produced by a stroke okay so I just want

to end with a simple message that

understanding the code is really really

important and if we can understand the

code you know the language of the brain

things become possible that didn’t seem

obviously possible before thank you

我研究大脑如何处理

信息,即它如何

从外部世界获取信息

并将其转换为

电活动模式,然后它如何使用

这些模式让你做一些事情

,看到听到,然后伸手去拿一个物体,所以

我 “我真的是一名基础科学家而不是

临床医生,但在过去的一年

半里,我开始转而使用

我们对这些

活动模式的了解来开发

假肢装置,而我

今天想做的是展示 你举个例子,

这真的是我们第一次涉足这个领域,

它是开发一种

治疗失明的假肢装置,好吧,所以

让我开始讨论这个问题

,美国有 1000 万人,

全世界还有更多的人失明或

因失明而面临失明 对于视网膜

疾病,如黄斑变性,

几乎没有什么可以为他们做的,

有一些药物治疗,但

它们只对一小

部分人有效,所以f

或者绝大多数患者

恢复视力的最大希望是通过

假肢设备问题是

目前的假肢不能很好地工作

,他们可以提供的视力仍然非常有限,所以你知道

例如这些设备 患者

可以看到简单的东西,例如明亮的灯光

和高对比度的边缘,几乎没有,

所以几乎没有任何接近正常

视力的东西,所以我

今天要告诉你的是一种

我们一直在研究的设备

,我 think 有可能使

改变变得更有效,

我想做的是向您展示它是如何

工作

的 我们试图在这里解决你有

一个视网膜 所以你有一个图像 一个视网膜

和一个大脑 所以当你

看到这个婴儿脸的图像时,

它会进入你的眼睛并

落在你视网膜的前端细胞上

这里是光感受器,然后

发生的是视网膜电路,

中间部分对其工作,

它所做的是它执行

操作并从中提取

信息,并将该

信息转换为代码,代码

的形式为

这些被发送到大脑的电脉冲模式

,所以关键

是图像最终被转换

成代码,当我说尾声时,我的

字面意思是像这种

模式这样的代码实际上是指婴儿的脸,

所以当 大脑得到这种脉冲模式,

它知道外面

是婴儿的脸,如果它得到

不同的模式,它就会

知道外面的东西是狗或

其他模式,无论如何

你明白了, 当然,在现实

生活中,一切都是动态的,意味着它一直在

变化,所以

脉冲的模式一直在变化,因为

你所看到的

世界也在不断变化,所以你

知道的 这是一件很复杂的事情

,你的眼睛每毫秒都会有这些脉冲模式告诉

你的大脑你看到

了什么,所以当一个人

患上像黄斑变性这样的视网膜退行性疾病

时会发生

什么 前端细胞死亡,

光感受器死亡,随着时间的推移,所有

细胞和

与它们相连的电路都会死亡——直到

你唯一剩下的就是这些

细胞,输出细胞

,向大脑发送信号的细胞,但是

因为 在所有这些退化中,

他们不再发送任何信号,

他们没有得到任何输入,因此人的

大脑不再获得任何视觉

信息,即他或她是盲人,

因此解决问题的方法

是制造一个设备 可以模仿

该前端电路的动作

并向视网膜输出细胞发出信号,

然后它们可以回到

正常工作,向大脑发送信号,

所以我 这是我们

一直在做的,这就是我们的

假肢所做的,所以它由两部分组成,

我们称之为编码器和

换能器,所以编码器就像

我所说的那样,它模仿

前端电路的动作 所以它接收

图像并将它们转换为

视网膜代码,然后换能

器使输出细胞将

代码发送到大脑,结果

是可以产生正常视网膜输出的视网膜假体,

因此

即使是一个完全失明的视网膜 完全没有前端

电路,没有光感受器

现在可以发出

大脑可以理解的正常信号信号,所以没有其他

设备能够做到这一点,所以

我只想接受它,你知道

一两句话可以说些

什么 编码器以及它正在做什么,因为

它确实是关键部分,它

有点有趣,有点酷

真的是视网膜电路的胆量,

其中包含一组方程一组

方程,我们可以在

芯片上实现,所以这只是数学,换句话说,

我们并没有真正替换

视网膜的组件,这不像

我们正在制作一个 用于

每种不同细胞类型的小型迷你设备,我们

就像抽象出

视网膜对一组方程所做的事情

,因此在某种程度上,方程

作为一种密码本,图像

进入通过一组

方程和结果

电脉冲流就像正常的

视网膜一样会产生好的,所以现在

让我把钱放在嘴边,告诉

你我们实际上可以产生正常的

输出,这

意味着什么是好的,所以这里

有三个 一组发射模式

来自正常动物的顶部模式 来自

使用此编码器换能器

设备治疗的盲动物的中间模式和来自使用标准假肢治疗的盲动物的底部

模式 etic 所以最下面的

设备是目前最先进的设备,

它基本上由

光探测器组成,但没有编码器,所以

我们所做的就是展示你

知道的日常生活的电影人们婴儿公园的

长椅你知道 经常

发生的事情,我们记录

这三组动物视网膜的反应,

只是为了给你定位每个盒子

都显示了几个细胞的放电模式

,就像在

前面的幻灯片中一样,每一行都是一个不同的

细胞,我只是做了脉冲

更小更薄一点,这样我就可以向

您展示很长的数据了

这非常

好,用标准假肢治疗的盲动物

反应

真的没有,所以用标准

方法,细胞会发射,

它们只是在正常的

发射中不会发射 g 模式,因为他们

没有正确的代码 这有多重要

潜在影响是什么

以及患者的视力是什么 所以

我将向您展示一个

底线实验,答案

是当然我得到了 很多其他数据,

所以如果你有兴趣,我很

乐意展示更多的数据,所以这个实验

被称为重建实验,所以

我们所做的是我们

从这些记录中花一点时间,

询问视网膜看到了什么 在那一刻,我们可以

重建视网膜从发射模式的响应中看到的东西,

所以当我们

对来自标准方法

以及来自我们的编码器和传感器的响应进行此操作时,

让我向您展示,我将

开始 一个标准的方法首先是好的,

所以你可以看到它非常有限,

并且因为触发模式

不在正确的代码

中,它们可以告诉你的内容非常有限,

所以你可以看到有

什么东西 在这里,但不太

清楚那是

什么东西,这只是回到

我一开始所说的,

用标准方法,患者可以看到

高对比度边缘,他们可以看到光,

但它并不容易

走得更远 好的,那是婴儿脸的图像是

什么 好的,那么使用我们的

方法添加代码怎么样,您会看到

效果要好得多,您不仅可以

分辨出这是婴儿的脸,而且还

可以分辨出这是婴儿的脸

一个非常具有挑战性的任务好吧,

所以左边是单独的编码器

,右边是从实际的盲人

视网膜到编码器和换能器,

但关键是真的只有编码器

,因为我们可以将编码器

与不同的换能器组合起来

实际上只是我们尝试的第一个

我只想说

一下标准方法当

它第一次出现时它只是一件非常

令人兴奋的事情你知道

你甚至可以制作一个盲人r的想法 etina 完全

响应,但这是

代码问题以及如何使细胞响应

产生正常响应的限制因素,所以

这是我们的贡献,所以现在我

只想总结一下,正如我

之前提到的 当然

,如果您有兴趣,我还有很多其他数据,

但我只是想给出

这种基本想法,即

能够以语言与大脑交流的想法

以及

能够做到这一点的潜在力量 它

不同于电机假肢,您

从大脑与

设备进行交流,我们必须

从外部世界与大脑交流,并被大脑

理解和理解

,然后我最

不想做的事情 说真的是

为了强调这个想法是概括的,

所以我们用来

查找视网膜代码的策略相同,我们也可以

用来查找其他区域的代码

,例如听觉系统

用于治疗

耳聋和运动

障碍的运动系统,就像

我们能够跳过受损的

电路和视网膜到达

视网膜输出细胞一样,我们可以

跳过受损的电路 在

耳蜗中获取听觉神经或

跳过受损区域和

运动皮层中的皮层以弥合

中风产生的间隙好吧,所以我只想

以一个简单的信息结束,即

理解代码真的非常

重要,如果我们 可以理解

代码 你知道大脑的语言

以前看起来不可能的事情变得可能

谢谢你