How to track a tornado Karen Kosiba

So, I think all good
tornado talks need to start

with an awesome tornado shot.

And this is not that awesome tornado shot.

That was the first tornado I ever saw,
it was really cool, really scary,

and I’m showing it to you guys

because that’s why I got
into the field in the first place.

So even though it’s a bad photograph,

it was really cool
to be out there the first time.

But now I’m taking real tornado footage.

Fast forward a few years.

This is a few years ago,
during a field project called VORTEX2,

where myself and a bunch
of other scientists were out there,

surrounding tornadoes
with different types of instrumentation

and trying to figure out
how tornadoes form.

It’s a big question
we’re trying to answer.

It sounds like a very basic one,

but it’s something
we’re still trying to figure out.

We’re also still trying to figure out
what the winds are like near the surface.

We know what the winds are like
above building level,

but we really don’t know
what they’re like at the surface

and how that relates
to what we’re seeing above building level.

Most tornadoes form from what we call
supercell thunderstorms.

Supercell thunderstorms
are what you commonly think of

as tornado-raising storms.

They’re big, rotating thunderstorms

that happen a lot of times
in the midsection of the United States.

But the problem is that even though
they’re rotating up above,

it doesn’t mean they’re rotating
at the surface.

And when we look at these storms

and at these pictures
and at the data we have,

they all kind of look the same.

And it’s really problematic

if we’re trying to make
tornado forecasts or warnings,

because we only want to warn
or forecast about the storms

that are going to actually make a tornado.

One of the big, critical distinguishing
features, we think, between these storms,

is something about
the rear-flank downdraft.

So these big rotating thunderstorms
have this downdraft

that wraps around the rear edge of it,

hence the “rear-flank” downdraft.

But we think how warm that is,
how buoyant that air is,

and then also how strong
the updraft it’s wrapping into,

makes a big difference on whether or not
it’s going to make a tornado.

There’s a lot more that goes into it –

I’ll tell you about that in a second.

Once you actually get a tornado,
again, the problem that we have

is getting measurements near the surface.

It’s really hard to get measurements
near the surface –

most people don’t want
to drive into tornadoes.

There are a few exceptions;
you might have seen them on TV shows.

But most people don’t want to do that.

Even getting instrumentation in the path
of the tornado is pretty tricky, too.

Because, again, you don’t want
to be that close to a tornado

because sometimes the winds
around the tornado are strong as well.

So getting information,
that critical location,

is key for us because,
again, we don’t know

if the winds that we’re seeing
above ground level,

way above building level,

actually map to the surface,

if they’re stronger, weaker,
or about the same

as what we’re seeing above buildings.

The way we get at answering
a lot of these questions –

and I’m an observationalist;
I love to get out in the field,

and collect data on tornadoes –

we compile a lot of observations.

I work with this group
who operates mobile radars,

and they’re exactly
what they say – basically, a radar

on the back of a big blue truck,

and we drive up really close
to tornadoes to map out the winds.

We map out the precipitation.

We map out all these
different things that are going on

in order to better understand
the processes in these storms.

And that bottom there,
that’s what a tornado looks like

when you’re looking at it
with a mobile radar, and really close.

Also, what we do is a lot of modeling,

so we do a lot of computer
models and simulations,

because the atmosphere
is governed by the laws of physics.

So we can model the laws of physics

and see where the tornado might go,

where the storm might go,

how strong the winds are near the surface

and not actually have
to go out in the field.

But of course, we want to have
both observations and modeling

to move forward with the science.

So, I showed you that video earlier
that went real quick, too.

This is what it looks like,
looking at it with a radar.

So you saw it visually,

but this is what I get really excited
about when I see now in the field,

stuff that looks like this.

The really exciting thing
about looking at stuff like this

is that we caught this storm
from when it didn’t make a tornado

to when it made a tornado and intensified

and when it dissipated.

This is the one of the rare data sets
that we have out there

that were able to study
the entire life cycle of a tornado.

I talked about how we think
that rear-flank downdraft is important

because it tilts, there’s a lot
of spin in the atmosphere,

but the problem with
all this spin in the atmosphere

is it needs to be oriented vertically,

because that’s what tornadoes are doing,

and it needs to orientated
vertically near the ground.

So we think this rear-flank
downdraft just pulses.

And these pulses in this
rear-flank downdraft, we think,

are very important
for converging that rotation,

but also getting that rotation
into the right place.

Other things we’ve learned

is that we have gotten
a bunch of fortuitous measurements

in the path of the tornadoes
and very near the surface.

And we found out

that the winds near the surface
are actually pretty comparable

to what we’re seeing 30, 40 meters
above ground level.

So there’s not a big reduction
in what we’re seeing above the surface

to what we’re seeing at house level.

And that was a pretty
surprising finding for us,

because we kind of assumed
that the winds decrease

pretty substantially near the surface.

I’m going to end with this real quick.

And this is not my last
tornado I ever saw,

but I really like this image,

because this was taken with one of those
mobile radars I was talking about.

This is a tornado, not a hurricane,

and this is what it looks like
when you’re really close to it.

And I find this amazing,

that we can actually take technology
this close to these types of storms

and see these inner workings.

And for those of you who look
at tornado images often,

you can see there’s a lot going on –
there’s rain spiraling,

and you can actually see the debris cloud
associated with this tornado.

I look forward to the future
and future technologies

and being able to learn
a lot more about these storms,

as the world advances,

as you guys contribute to the science

and we’re able to really learn
more about how tornadoes form.

Thank you.

(Applause)

所以,我认为所有好的
龙卷风谈话都需要

从一个很棒的龙卷风射击开始。

这不是那么棒的龙卷风射击。

那是我见过的第一个龙卷风,
真的很酷,真的很可怕

,我把它展示给你们,

因为这就是我
最初进入这个领域的原因。

所以即使这是一张糟糕的照片,

第一次去那里真的很酷。

但现在我正在拍摄真正的龙卷风镜头。

快进几年。

这是几年前,
在一个名为 VORTEX2 的实地项目中

,我和
其他一群科学家在那里,

用不同类型的仪器围绕龙卷风

并试图
弄清楚龙卷风是如何形成的。

这是我们试图回答的一个大问题

这听起来像是一个非常基本的问题,

但这是
我们仍在努力解决的问题。

我们还在试图
弄清楚地表附近的风是什么样的。

我们知道建筑物上方的风是什么样的

但我们真的不
知道它们在地表是什么样的

,以及这
与我们在建筑物上方看到的东西有什么关系。

大多数龙卷风是由我们所说的
超级单体雷暴形成的。

超级单体雷暴
是你通常认为

的引发龙卷风的风暴。

它们

是在美国中部经常发生的大型旋转雷暴。

但问题是,即使
它们在上方旋转

,也不意味着它们
在表面旋转。

当我们看到这些风暴

、这些图片
和我们拥有的数据时,

它们看起来都一样。

如果我们试图进行
龙卷风预测或警告,这确实是有问题的,

因为我们只想警告

预测真正会产生龙卷风的风暴。

我们认为,在这些风暴之间,最大的、关键的显着特征之一

是后方下沉气流。

所以这些大的旋转雷暴
有这种下沉气流

环绕它的后缘,

因此是“后侧”下沉气流。

但是我们认为那是多么温暖
,空气多么浮力,

以及
它所卷入的上升气流有多强,对它

是否会产生龙卷风有很大的影响

它还有很多内容——

我稍后会告诉你。

一旦你真的遇到了龙卷风
,我们遇到的问题就是

在地表附近进行测量。

在地表附近进行测量真的很难
——

大多数人
不想开车进入龙卷风。

有几个例外;
您可能已经在电视节目中看到过它们。

但大多数人不想这样做。

即使在龙卷风的路径
上安装仪器也非常棘手。

因为,再一次,你
不想离龙卷风那么近,

因为有时
龙卷风周围的风也很强。

所以获取信息,
那个关键位置,

对我们来说很关键,因为,
再一次,我们不

知道我们在地面以上看到的风

远高于建筑水平,是否

真的映射到地表,

如果它们更强, 较弱,
或与

我们在建筑物上方看到的大致相同。

我们
回答很多这些问题的方式

——我是一个观察家;
我喜欢到野外

去收集有关龙卷风的数据——

我们收集了很多观察结果。

我与这个
操作移动雷达的小组一起工作

,他们
正是他们所说的——基本上,是

一辆蓝色大卡车后部的雷达

,我们开车非常
靠近龙卷风来绘制风图。

我们绘制降水图。

我们绘制出所有这些
正在发生的不同事情

,以便更好地了解
这些风暴中的过程。

还有那个底部,当你用移动雷达观察
龙卷风时,这就是龙卷风的样子

,而且非常接近。

另外,我们做的是很多建模,

所以我们做了很多计算机
模型和模拟,

因为大气
是受物理定律支配的。

所以我们可以模拟物理定律

,看看龙卷风可能去

哪里,风暴可能去哪里,

地表附近的风有多强

,实际上不必
在野外出去。

但是,当然,我们希望同时
拥有观察和建模

来推动科学发展。

所以,我之前给你看了那个视频
,它也很快。

这是它的样子,
用雷达观察它。

所以你在视觉上看到了它,

但是
当我现在在现场看到像这样的东西时,这就是我真正感到兴奋的地方

。 看到这样

的东西真正令人兴奋的事情

是,我们
从没有形成龙卷风

到形成龙卷风并加强

和消散的过程中捕捉到了这场风暴。


是我们拥有

的能够
研究龙卷风整个生命周期的稀有数据集之一。

我谈到了我们如何
认为后翼下沉气流很重要,

因为它会倾斜,
大气中有很多旋转,


大气中所有这些旋转的问题

是它需要垂直定向,

因为这就是龙卷风正在做的事情 ,

并且它需要
垂直定位在地面附近。

所以我们认为这种后翼
下降气流只是脉冲。

我们认为,这种后翼下沉气流中的这些脉冲

对于收敛这种旋转非常重要,

而且也使这种旋转
进入正确的位置。

我们了解到的其他事情

是,我们

在龙卷风的路径上
以及非常接近地表的地方获得了一系列偶然的测量结果。

我们

发现地表附近的风
实际上

与我们在
地面以上 30、40 米处看到的风相当。

因此,
我们在表面

上看到的与我们在房屋层面看到的相比并没有太大的减少。

这对我们来说是一个非常
令人惊讶的发现,

因为我们有点
假设风

在地表附近会大幅减弱。

我将很快结束这个。

这不是我最后
一次看到龙卷风,

但我真的很喜欢这张照片,

因为这是用
我所说的移动雷达拍摄的。

这是龙卷风,不是飓风,

当你真正靠近它时,这就是它的样子。

我发现这很神奇

,我们实际上可以将技术
如此接近这些类型的风暴,

并看到这些内部运作。

对于那些
经常看龙卷风图像的人来说,

你可以看到发生了很多事情
——雨在盘旋

,你实际上可以看到
与龙卷风相关的碎片云。

我期待着未来
和未来的技术

,并且能够
更多地了解这些风暴,

随着世界的进步,

随着你们为科学做出贡献

,我们能够真正了解
更多关于龙卷风如何形成的信息。

谢谢你。

(掌声)