Will there ever be a milehigh skyscraper Stefan Al

In 1956,

architect Frank Lloyd Wright

proposed a mile-high skyscraper.

It was going to be the world’s
tallest building,

by a lot —

five times as high as the Eiffel Tower.

But many critics laughed at the architect,

arguing that people would have to wait
hours for an elevator,

or worse, that the tower would collapse
under its own weight.

Most engineers agreed,

and despite the publicity
around the proposal,

the titanic tower was never built.

But today,

bigger and bigger buildings are going up
around the world.

Firms are even planning skyscrapers
more than a kilometer tall,

like the Jeddah Tower in Saudi Arabia,

three times the size of the Eiffel Tower.

Very soon,

Wright’s mile-high miracle
may be a reality.

So what exactly was stopping us

from building these megastructures
70 years ago,

and how do we build something
a mile high today?

In any construction project,

each story of the structure needs to be
able to support the stories on top of it.

The higher we build,

the higher the gravitational pressure
from the upper stories on the lower ones.

This principle has long dictated
the shape of our buildings,

leading ancient architects to favor
pyramids with wide foundations

that support lighter upper levels.

But this solution doesn’t quite translate
to a city skyline–

a pyramid that tall would be roughly
one-and-a-half miles wide,

tough to squeeze into a city center.

Fortunately, strong materials like
concrete can avoid this impractical shape.

And modern concrete blends are reinforced
with steel-fibers for strength

and water-reducing polymers
to prevent cracking.

The concrete in the world’s tallest tower,
Dubai’s Burj Khalifa,

can withstand about 8,000 tons of pressure
per square meter–

the weight of over 1,200
African elephants!

Of course, even if a building
supports itself,

it still needs support from the ground.

Without a foundation,

buildings this heavy would sink, fall,
or lean over.

To prevent the roughly half a million
ton tower from sinking,

192 concrete and steel supports called
piles were buried over 50 meters deep.

The friction between the piles
and the ground

keeps this sizable structure standing.

Besides defeating gravity,

which pushes the building down,

a skyscraper also needs to overcome
the blowing wind,

which pushes from the side.

On average days,

wind can exert up to 17 pounds of force
per square meter on a high-rise building–

as heavy as a gust of bowling balls.

Designing structures to be aerodynamic,

like China’s sleek Shanghai Tower,

can reduce that force by up to a quarter.

And wind-bearing frames inside or
outside the building

can absorb the remaining wind force,

such as in Seoul’s Lotte Tower.

But even after all these measures,

you could still find yourself swaying back
and forth

more than a meter on top floors
during a hurricane.

To prevent the wind from
rocking tower tops,

many skyscrapers employ a counterweight
weighing hundreds of tons

called a “tuned mass damper.”

The Taipei 101, for instance,

has suspended a giant metal orb
above the 87th floor.

When wind moves the building,

this orb sways into action,

absorbing the building’s kinetic energy.

As its movements trail the tower’s,

hydraulic cylinders between the ball
and the building

convert that kinetic energy into heat,

and stabilize the swaying structure.

With all these technologies in place,

our mega-structures can stay
standing and stable.

But quickly traveling through buildings
this large is a challenge in itself.

In Wright’s age,

the fastest elevators moved
a mere 22 kilometers per hour.

Thankfully, today’s elevators are much
faster, traveling over 70 km per hour

with future cabins potentially using
frictionless magnetic rails

for even higher speeds.

And traffic management algorithms
group riders by destination

to get passengers and empty cabins
where they need to be.

Skyscrapers have come a long way since
Wright proposed his mile-high tower.

What were once considered impossible ideas

have become architectural opportunities.

Today it may just be a matter of time

until one building goes the extra mile.

1956 年,

建筑师弗兰克·劳埃德·赖特

提出了一座一英里高的摩天大楼。

它将成为世界上
最高的建筑,

比埃菲尔铁塔高五倍。

但许多批评者嘲笑这位建筑师,

认为人们将不得不等待
数小时才能乘坐电梯,

或者更糟的是,这座塔会因
自身重量而倒塌。

大多数工程师都同意

,尽管
围绕该提案进行了宣传

,但泰坦尼克塔从未建成。

但是今天,

越来越大的建筑物正在
世界各地建造。

公司甚至计划建造
超过一公里高的摩天大楼,

例如沙特阿拉伯的吉达塔,

其大小是埃菲尔铁塔的三倍。

很快,

赖特的一英里高奇迹
可能会成为现实。

那么究竟是什么阻止了我们

在 70 年前建造这些巨型结构

而今天我们如何建造
一英里高的东西呢?

在任何建设项目中,

结构的每个楼层都需要
能够支撑其上的楼层。

我们建得越高

,上层对下层的重力压力就越大。

这一原则长期以来决定
了我们建筑物的形状,

导致古代建筑师偏爱
具有宽基础的金字塔,以

支持较轻的上层。

但这个解决方案并不能完全转化
为城市天际线——

一个那么高的金字塔
大约有 1.5 英里宽,

很难挤进市中心。

幸运的是,像
混凝土这样的坚固材料可以避免这种不切实际的形状。

现代混凝土混合物
用钢纤维增强强度

和减水聚合物
以防止开裂。

世界最高
塔迪拜哈利法塔的混凝土每平方米

可承受约 8,000 吨压力

相当于 1,200 多头
非洲大象的重量!

当然,即使一座建筑
自己支撑起来,

它仍然需要地面的支撑。

如果没有地基,那么

重的建筑物会下沉、倒下
或倾斜。

为了防止大约 50
万吨的塔下沉,

192 个称为桩的混凝土和钢支撑
被埋在 50 米深的地方。

桩与地面之间的摩擦力

使这个相当大的结构保持站立状态。

除了克服

将建筑物推倒的重力之外

,摩天大楼还需要克服

从侧面推动的风。

平均而言,

风可以
在高层建筑上每平方米施加高达 17 磅的力——

就像一阵保龄球一样重。

设计符合空气动力学的结构,

比如中国时尚的上海中心大厦,

可以将这种力减少多达四分之一。

而建筑物内部或外部的挡风框架

可以吸收剩余的风力,

例如首尔的乐天塔。

但即使采取了所有这些措施,

你仍然会发现自己在飓风期间

在顶层来回摇晃超过一米

为了防止风
摇晃塔顶,

许多摩天大楼采用了
重达数百吨的配重,

称为“调谐质量阻尼器”。

例如,台北 101 在 87 层上方

悬挂了一个巨大的金属球

当风移动建筑物时,

这个球体会摆动,

吸收建筑物的动能。

随着它的运动跟随塔的运动,

球和建筑物之间的液压缸

将动能转化为热量,

并稳定摇摆的结构。

有了所有这些技术,

我们的巨型结构可以保持
站立和稳定。

但是快速穿越
这么大的建筑物本身就是一个挑战。

在赖特的时代

,最快的电梯
每小时只能移动 22 公里。

值得庆幸的是,今天的电梯
速度要快得多,时速超过 70 公里

,未来的机舱可能会使用
无摩擦磁轨

来实现更高的速度。

交通管理算法
按目的地

对乘客进行分组,以便将乘客和空客舱
送到他们需要去的地方。

自从赖特提出他的一英里高的塔楼以来,摩天大楼已经走了很长一段路

曾经被认为不可能的想法

已经成为建筑的机会。

今天,

一栋建筑加倍努力可能只是时间问题。