Why the is there so much traffic Benjamin Seibold

You’re cruising down the highway
when all of a sudden

endless rows of brake lights appear ahead.

There’s no accident, no stoplight,

no change in speed limit
or narrowing of the road.

So why the @#$%! is there
so much traffic?

When traffic comes to a near standstill
for no apparent reason,

it’s called a phantom traffic jam.

A phantom traffic jam
is an emergent phenomenon

whose behavior takes on a life of its own,
greater than the sum of its parts.

But in spite of this,
we can actually model these jams,

even understand the principles
that shape them—

and we’re closer than you might think

to preventing this kind of traffic
in the future.

For a phantom traffic jam to form,
there must be a lot of cars on the road.

That doesn’t mean
there are necessarily too many cars

to pass through a stretch
of roadway smoothly,

at least not if every driver maintains
the same consistent speed and spacing

from other drivers.

In this dense, but flowing, traffic,

it only takes a minor disturbance
to set off the chain of events

that causes a traffic jam.

Say one driver brakes slightly.

Each successive driver then brakes
a little more strongly,

creating a wave of brake lights
that propagates backward

through the cars on the road.

These stop-and-go waves
can travel along a highway for miles.

With a low density of cars on the road,

traffic flows smoothly
because small disturbances,

like individual cars changing lanes
or slowing down at a curve,

are absorbed by other
drivers’ adjustments.

But once the number of cars
on the road exceeds a critical density,

generally when cars are spaced
less than 35 meters apart,

the system’s behavior
changes dramatically.

It begins to display dynamic instability,
meaning small disturbances are amplified.

Dynamic instability isn’t unique
to phantom traffic jams—

it’s also responsible for raindrops,
sand dunes, cloud patterns, and more.

The instability is
a positive feedback loop.

Above the critical density,

any additional vehicle reduces
the number of cars per second

passing through a given point on the road.

This in turn means it takes longer
for a local pileup

to move out of a section of the road,
increasing vehicle density even more,

which eventually adds up
to stop-and-go traffic.

Drivers tend not to realize they need
to break far in advance of a traffic jam,

which means they end up having
to brake harder to avoid a collision.

This strengthens the wave of braking
from vehicle to vehicle.

What’s more, drivers tend to accelerate
too rapidly out of a slowdown,

meaning they try to drive faster

than the average flow of traffic
downstream of them.

Then, they have to brake again,
eventually producing another feedback loop

that causes more stop-and-go traffic.

In both cases, drivers make traffic worse

simply because they don’t have a good
sense of the conditions ahead of them.

Self driving cars equipped with data
on traffic conditions ahead

from connected vehicles
or roadway sensors

might be able to counteract
phantom traffic in real-time.

These vehicles would maintain
a uniform speed, safety permitting,

that matches the average speed
of the overall flow,

preventing traffic waves from forming.

In situations where there’s
already a traffic wave,

the automated vehicle
would be able to anticipate it,

braking sooner and more gradually
than a human driver

and reducing the strength of the wave.

And it wouldn’t take that many
self-driving cars—

In a recent experiment, one autonomous
vehicle for every 20 human drivers

was enough to dampen
and prevent traffic waves.

Traffic jams are not only
a daily annoyance–

they’re a major cause of fatalities,

wasted resources,
and planet-threatening pollution.

But new technology may help reduce
these patterns,

rendering our roads safer,

our daily commutes more efficient,
and our air cleaner.

And the next time you’re stuck in traffic,

it may help to remember that other drivers
aren’t necessarily driving spitefully,

but are simply unaware of road
conditions ahead— and drive accordingly.

当你在高速公路上巡航
时,突然

一排排的刹车灯出现在前方。

没有事故,没有红绿灯,

没有限速变化
或道路变窄。

那么为什么@#$%! 有
这么多流量吗?

当交通无缘无故几乎停止时

它被称为幻像交通拥堵。

幻象交通拥堵
是一种突发现象,

其行为具有其自身的生命力,
大于其各部分的总和。

但尽管如此,
我们实际上可以对这些拥堵进行建模,

甚至
了解形成它们的原理——

而且我们比你想象的更

接近于在未来阻止这种交通

幻觉交通堵塞的形成,
必须有很多汽车在路上。

这并不意味着
必须有太多的汽车

才能
顺利通过一段道路,

至少如果每个司机都
保持与其他司机相同的一致速度和间距的话

在这种密集但流动的交通中

,只需轻微的干扰
即可

引发导致交通拥堵的事件链。

假设一名司机轻微刹车。

然后,每个连续的司机都会
稍微用力刹车,

产生一波刹车灯
,向后传播

通过道路上的汽车。

这些走走停停的海浪
可以沿着高速公路行驶数英里。

由于道路上的汽车密度低,

交通顺畅,
因为小的干扰,

如个别汽车改变车道
或在弯道减速,

被其他
司机的调整所吸收。

但是一旦
道路上的汽车数量超过临界密度,

通常当汽车
间距小于 35 米时

,系统的行为
就会发生巨大变化。

它开始表现出动态不稳定性,
这意味着小扰动被放大了。

动态不稳定性并不是
幻象交通拥堵所独有

的——它还与雨滴、
沙丘、云模式等有关。

不稳定性是
一个正反馈回路。

超过临界密度,

任何额外的车辆都会
减少每秒

通过道路上给定点的汽车数量。

反过来,这意味着
局部堆积物需要更长的时间

才能移出一段道路,
从而进一步增加车辆密度

,最终
增加走走停停的交通。

司机往往没有意识到他们需要
在交通拥堵之前提前停车,

这意味着他们最终不得不
更加努力地刹车以避免碰撞。

这加强了车辆之间的制动波

更重要的是,司机往往会因为减速而加速
过快,

这意味着他们试图比下游的平均车流开得更快

然后,他们必须再次刹车,
最终产生另一个反馈循环

,导致更多的走走停停的交通。

在这两种情况下,司机都会让交通变得更糟,

因为
他们对前方的情况没有很好的了解。

配备

来自联网车辆
或道路传感器的前方交通状况数据的自动驾驶汽车

可能能够
实时抵消幻影交通。

在安全允许的情况下,这些车辆将保持一致的速度,

与整体流量的平均速度相匹配

从而防止形成交通波。


已经出现交通波的情况下

,自动驾驶汽车
将能够预测到它,比人类驾驶员

更快、更缓慢地制动,

并降低波的强度。

并且不需要那么多
自动驾驶汽车——

在最近的一项实验中,
每 20 名人类驾驶员一辆自动驾驶汽车

就足以抑制
和防止交通波。

交通拥堵不仅
是日常烦恼——

它们是造成死亡、

资源浪费
和威胁地球的污染的主要原因。

但新技术可能有助于减少
这些模式,

让我们的道路更安全,

让我们的日常通勤更有效率
,让我们的空气更清洁。

下次遇到堵车时,

记住其他
司机不一定是恶意驾驶,

只是根本不知道
前方的路况——并相应地驾驶,这可能会有所帮助。