The power of creative constraints Brandon Rodriguez

Imagine you’re asked
to invent something new.

It could be whatever you want

made from anything you choose

in any shape or size.

That kind of creative freedom
sounds so liberating, doesn’t it?

Or does it?

If you’re like most people,
you’d probably be paralyzed by this task.

Without more guidance,
where would you even begin?

As it turns out, boundless freedom
isn’t always helpful.

In reality, any project is restricted
by many factors,

such as the cost,

what materials you have at your disposal,

and unbreakable laws of physics.

These factors are called
creative constraints,

and they’re the requirements
and limitations

we have to address
in order to accomplish a goal.

Creative constraints apply
across professions,

to architects and artists,

writers,

engineers,

and scientists.

In many fields, constraints play
a special role

as drivers of discovery and invention.

During the scientific process
in particular,

constraints are an essential part
of experimental design.

For instance, a scientist studying
a new virus would consider,

“How can I use the tools
and techniques at hand

to create an experiment that tells me
how this virus infects the body’s cells?

And what are the limits of my knowledge
that prevent me

from understanding
this new viral pathway?”

In engineering, constraints have us
apply our scientific discoveries

to invent something new and useful.

Take, for example,
the landers Viking 1 and 2,

which relied on thrusters to arrive
safely on the surface of Mars.

The problem?

Those thrusters left foreign chemicals
on the ground,

contaminating soil samples.

So a new constraint was introduced.

How can we land a probe on Mars

without introducing chemicals
from Earth?

The next Pathfinder mission used
an airbag system

to allow the rover to bounce
and roll to a halt

without burning contaminating fuel.

Years later, we wanted to send
a much larger rover: Curiosity.

However, it was too large
for the airbag design,

so another constraint was defined.

How can we land a large rover
while still keeping rocket fuel

away from the Martian soil?

In response, engineers had a wild idea.

They designed a skycrane.

Similar to the claw machine at toy stores,

it would lower the rover
from high above the surface.

With each invention, the engineers
demonstrated an essential habit

of scientific thinking -

that solutions must recognize
the limitations of current technology

in order to advance it.

Sometimes this progress is iterative,

as in, “How can I make a better
parachute to land my rover?”

And sometimes, it’s innovative,

like how to reach our goal

when the best possible
parachute isn’t going to work.

In both cases, the constraints
guide decision-making

to ensure we reach each objective.

Here’s another Mars
problem yet to be solved.

Say we want to send astronauts
who will need water.

They’d rely on a filtration system
that keeps the water very clean

and enables 100% recovery.

Those are some pretty tough constraints,

and we may not have
the technology for it now.

But in the process of trying
to meet these objectives,

we might discover other applications
of any inventions that result.

Building an innovative
water filtration system

could provide a solution for farmers
working in drought-stricken regions,

or a way to clean municipal water
in polluted cities.

In fact, many scientific advances

have occurred when serendipitous failures
in one field

address the constraints of another.

When scientist Alexander Fleming
mistakenly contaminated

a Petri dish in the lab,

it led to the discovery
of the first antibiotic, penicillin.

The same is true of synthetic dye,

plastic,

and gunpowder.

All were created mistakenly,

but went on to address the constraints
of other problems.

Understanding constraints guides
scientific progress,

and what’s true in science
is also true in many other fields.

Constraints aren’t the boundaries
of creativity, but the foundation of it.

想象一下,你被
要求发明一些新东西。

它可以是你

想要的任何东西,由你选择

的任何形状或大小的任何东西制成。

这种创作自由
听起来很自由,不是吗?

或者是吗?

如果你和大多数人一样,
你可能会被这个任务弄得瘫痪。

如果没有更多的指导,
你甚至会从哪里开始?

事实证明,无限的自由
并不总是有用的。

实际上,任何项目都
受到许多因素的限制,

例如成本、

您可以使用的材料

以及牢不可破的物理定律。

这些因素被称为
创意约束

,它们是我们

为了实现目标而必须解决的要求和限制。

创意限制适用于
各个职业,适用

于建筑师和艺术家、

作家、

工程师

和科学家。

在许多领域,约束

作为发现和发明的驱动因素起着特殊的作用。 特别是

在科学过程
中,

约束是实验设计的重要组成部分

例如,研究
一种新病毒的科学家会考虑,

“我如何使用手头的工具
和技术

来创建一个实验,告诉我
这种病毒是如何感染人体细胞的?

我的知识有哪些限制
会阻止

我 了解
这种新的病毒途径?”

在工程学中,约束让我们
应用我们的科学发现

来发明一些新的和有用的东西。


登陆器维京 1 号和 2 号为例,

它们依靠推进器
安全抵达火星表面。

问题?

这些推进器将外来化学物质
留在地面上,

污染了土壤样本。

所以引入了一个新的约束。

我们如何在

不从地球引入化学物质的情况下将探测器登陆火星

下一个探路者任务
使用安全气囊

系统让火星车在

不燃烧污染燃料的情况下反弹并停止。

多年后,我们想发送
一个更大的漫游车:好奇号。

然而,
对于安全气囊设计来说它太大了,

因此定义了另一个约束。

我们如何才能
在让火箭燃料

远离火星土壤的同时让大型漫游车着陆?

作为回应,工程师们有了一个疯狂的想法。

他们设计了一架天车。

与玩具店的爪机类似,

它会从高处降低火星车

对于每一项发明,工程师们都
展示了一种

科学思维的基本习惯——

解决方案必须认识
到当前技术的局限性

才能推进它。

有时这种进展是迭代的,

例如,“我怎样才能制造更好的
降落伞来降落我的漫游车?”

有时,它是创新的,

比如

当最好的
降落伞不起作用时如何实现我们的目标。

在这两种情况下,约束都会
指导决策,

以确保我们实现每个目标。

这是另一个
尚未解决的火星问题。

假设我们要派出
需要水的宇航员。

他们将依靠过滤系统
来保持水非常干净

并实现 100% 的回收。

这些是一些非常严格的限制

,我们现在可能没有
相应的技术。

但在
努力实现这些目标的过程中,

我们可能会
发现由此产生的任何发明的其他应用。

构建创新的
水过滤系统

可以为在干旱地区工作的农民提供解决方案

或者为污染城市的市政用水提供清洁方法

事实上,


一个领域的偶然失败

解决了另一个领域的限制时,许多科学进步就出现了。

当科学家亚历山大弗莱明

在实验室中错误地污染了培养皿时

,导致
了第一种抗生素青霉素的发现。

合成染料、

塑料

和火药也是如此。

所有这些都是错误地创建的,

但继续解决
其他问题的限制。

了解约束可以指导
科学进步,

科学
中的真实情况在许多其他领域也是真实的。

约束不是创造力的界限
,而是创造力的基础。