Origami robots that reshape and transform themselves Jamie Paik

As a roboticist,
I get asked a lot of questions.

“When we will they start
serving me breakfast?”

So I thought the future of robotics
would be looking more like us.

I thought they would look like me,

so I built eyes
that would simulate my eyes.

I built fingers that are dextrous
enough to serve me …

baseballs.

Classical robots like this

are built and become functional

based on the fixed number
of joints and actuators.

And this means their functionality
and shape are already fixed

at the moment of their conception.

So even though this arm
has a really nice throw –

it even hit the tripod at the end–

it’s not meant for cooking you
breakfast per se.

It’s not really suited for scrambled eggs.

So this was when I was hit
by a new vision of future robotics:

the transformers.

They drive, they run, they fly,

all depending on the ever-changing,
new environment and task at hand.

To make this a reality,

you really have to rethink
how robots are designed.

So, imagine a robotic module
in a polygon shape

and using that simple polygon shape

to reconstruct multiple different forms

to create a new form of robot
for different tasks.

In CG, computer graphics,
it’s not any news –

it’s been done for a while, and that’s how
most of the movies are made.

But if you’re trying to make a robot
that’s physically moving,

it’s a completely new story.

It’s a completely new paradigm.

But you’ve all done this.

Who hasn’t made a paper airplane,
paper boat, paper crane?

Origami is a versatile
platform for designers.

From a single sheet of paper,
you can make multiple shapes,

and if you don’t like it,
you unfold and fold back again.

Any 3D form can be made
from 2D surfaces by folding,

and this is proven mathematically.

And imagine if you were to have
an intelligent sheet

that can self-fold into any form it wants,

anytime.

And that’s what I’ve been working on.

I call this robotic origami,

“robogami.”

This is our first robogami transformation

that was made by me about 10 years ago.

From a flat-sheeted robot,

it turns into a pyramid
and back into a flat sheet

and into a space shuttle.

Quite cute.

Ten years later, with my group
of ninja origami robotic researchers –

about 22 of them right now –

we have a new generation of robogamis,

and they’re a little more effective
and they do more than that.

So the new generation of robogamis
actually serve a purpose.

For example, this one actually navigates
through different terrains autonomously.

So when it’s a dry
and flat land, it crawls.

And if it meets sudden rough terrain,

it starts rolling.

It does this – it’s the same robot –

but depending on which terrain it meets,

it activates a different sequence
of actuators that’s on board.

And once it meets an obstacle,
it jumps over it.

It does this by storing energy
in each of its legs

and releasing it and catapulting
like a slingshot.

And it even does gymnastics.

Yay.

(Laughter)

So I just showed you
what a single robogami can do.

Imagine what they can do as a group.

They can join forces to tackle
more complex tasks.

Each module, either active or passive,

we can assemble them
to create different shapes.

Not only that, by controlling
the folding joints,

we’re able to create and attack
different tasks.

The form is making new task space.

And this time, what’s most
important is the assembly.

They need to autonomously
find each other in a different space,

attach and detach, depending on
the environment and task.

And we can do this now.

So what’s next?

Our imagination.

This is a simulation
of what you can achieve

with this type of module.

We decided that we were going
to have a four-legged crawler

turn into a little dog
and make small gaits.

With the same module, we can actually
make it do something else:

a manipulator, a typical,
classical robotic task.

So with a manipulator,
it can pick up an object.

Of course, you can add more modules
to make the manipulator legs longer

to attack or pick up objects
that are bigger or smaller,

or even have a third arm.

For robogamis, there’s no
one fixed shape nor task.

They can transform into anything,
anywhere, anytime.

So how do you make them?

The biggest technical challenge
of robogami is keeping them super thin,

flexible,

but still remaining functional.

They’re composed of multiple layers
of circuits, motors,

microcontrollers and sensors,

all in the single body,

and when you control
individual folding joints,

you’ll be able to achieve
soft motions like that

upon your command.

Instead of being a single robot that is
specifically made for a single task,

robogamis are optimized to do multi-tasks.

And this is quite important

for the difficult and unique
environments on the Earth

as well as in space.

Space is a perfect
environment for robogamis.

You cannot afford to have
one robot for one task.

Who knows how many tasks
you will encounter in space?

What you want is a single robotic platform
that can transform to do multi-tasks.

What we want is a deck
of thin robogami modules

that can transform to do multiples
of performing tasks.

And don’t take my word for it,

because the European Space Agency
and Swiss Space Center

are sponsoring this exact concept.

So here you see a couple of images
of reconfiguration of robogamis,

exploring the foreign land
aboveground, on the surface,

as well as digging into the surface.

It’s not just exploration.

For astronauts, they need additional help,

because you cannot afford
to bring interns up there, either.

(Laughter)

They have to do every tedious task.

They may be simple,

but super interactive.

So you need robots
to facilitate their experiments,

assisting them with the communications

and just docking onto surfaces to be
their third arm holding different tools.

But how will they be able
to control robogamis, for example,

outside the space station?

In this case, I show a robogami
that is holding space debris.

You can work with your vision
so that you can control them,

but what would be better
is having the sensation of touch

directly transported onto
the hands of the astronauts.

And what you need is a haptic device,

a haptic interface that recreates
the sensation of touch.

And using robogamis, we can do this.

This is the world’s
smallest haptic interface

that can recreate a sensation of touch
just underneath your fingertip.

We do this by moving the robogami

by microscopic and macroscopic
movements at the stage.

And by having this, not only
will you be able to feel

how big the object is,

the roundness and the lines,

but also the stiffness and the texture.

Alex has this interface
just underneath his thumb,

and if he were to use this
with VR goggles and hand controllers,

now the virtual reality
is no longer virtual.

It becomes a tangible reality.

The blue ball, red ball
and black ball that he’s looking at

is no longer differentiated by colors.

Now it is a rubber blue ball,
sponge red ball and billiard black ball.

This is now possible.

Let me show you.

This is really the first time
this is shown live

in front of a public grand audience,

so hopefully this works.

So what you see here
is an atlas of anatomy

and the robogami haptic interface.

So, like all the other
reconfigurable robots,

it multitasks.

Not only is it going to serve as a mouse,

but also a haptic interface.

So for example, we have a white background
where there is no object.

That means there is nothing to feel,

so we can have a very,
very flexible interface.

Now, I use this as a mouse
to approach skin,

a muscular arm,

so now let’s feel his biceps,

or shoulders.

So now you see
how much stiffer it becomes.

Let’s explore even more.

Let’s approach the ribcage.

And as soon as I move
on top of the ribcage

and between the intercostal muscles,

which is softer and harder,

I can feel the difference
of the stiffness.

Take my word for it.

So now you see, it’s much stiffer
in terms of the force

it’s giving back to my fingertip.

So I showed you the surfaces
that aren’t moving.

How about if I were to approach
something that moves,

for example, like a beating heart?

What would I feel?

(Applause)

This can be your beating heart.

This can actually be inside your pocket

while you’re shopping online.

Now you’ll be able to feel the difference
of the sweater that you’re buying,

how soft it is,

if it’s actually cashmere or not,

or the bagel that you’re trying to buy,

how hard it is or how crispy it is.

This is now possible.

The robotics technology is advancing
to be more personalized and adaptive,

to adapt to our everyday needs.

This unique specie
of reconfigurable robotics

is actually the platform to provide
this invisible, intuitive interface

to meet our exact needs.

These robots will no longer look like
the characters from the movies.

Instead, they will be whatever
you want them to be.

Thank you.

(Applause)

作为一名机器人专家,
我被问到很多问题。

“我们什么时候开始
给我上早餐?”

所以我认为机器人技术的
未来会更像我们。

我认为它们看起来像我,

所以我制作
了可以模拟我的眼睛的眼睛。

我的手指足够灵巧
,可以为我服务……

棒球。

像这样的经典机器人

基于固定数量
的关节和执行器构建并发挥作用的。

这意味着它们的功能
和形状

在其构思的那一刻就已经确定了。

因此,即使这只
手臂的投掷非常好——

它甚至在最后撞到了三脚架——

它本身并不是用来给你做
早餐的。

它真的不适合炒鸡蛋。

所以这就是我
对未来机器人技术的新愿景的打击

:变形金刚。

他们驾驶、奔跑、飞行,

这一切都取决于手头不断变化的
新环境和任务。

为了让这成为现实,

你真的必须重新
思考机器人的设计方式。

因此,想象
一个多边形形状的机器人模块,

并使用这个简单的多边形形状

来重建多种不同的形式,

从而为不同的任务创建一种新形式的机器人

在 CG,计算机图形学中,
这不是什么新闻——

它已经完成了一段时间,这就是
大多数电影的制作方式。

但如果你想制造一个
可以移动的机器人,

那就是一个全新的故事了。

这是一个全新的范式。

但是你们都做到了。

谁没有做过纸飞机、
纸船、纸鹤?

折纸是设计师的多功能
平台。

从一张纸上,
您可以制作多种形状

,如果您不喜欢它,
您可以展开并再次折叠回来。

任何 3D 形式都可以
通过折叠从 2D 表面制成

,这在数学上得到了证明。

想象一下,如果你有
一张智能床单

,它可以随时自动折叠成它想要的任何形式

这就是我一直在做的事情。

我称这种机器人折纸为

“robogami”。

这是大约 10 年前我进行的第一次 robogami 改造。

从一个平板机器人,

它变成一个金字塔
,再变成一个平板

,再变成一个航天飞机。

很可爱。

十年后,我和我
的忍者折纸机器人研究小组——

现在大约有 22 人——

我们有了新一代的机器人

,他们更有效
,而且做得更多。

所以新一代的机器人游戏
实际上是有目的的。

例如,这个实际上是
自主地在不同的地形中导航。

因此,当它是
干燥平坦的土地时,它会爬行。

如果它遇到突然的崎岖地形,

它就会开始滚动。

它会这样做——它是同一个机器人——

但根据它遇到的地形,

它会激活船上的不同
执行器序列。

一旦遇到障碍物,
它就会跳过它。

它通过
在每条腿中储存能量

并释放能量并像弹弓一样弹射来做到这一点

它甚至会做体操。

耶。

(笑声)

所以我只是向你们
展示了一个机器人游戏能做什么。

想象一下他们作为一个团队可以做些什么。

他们可以联手解决
更复杂的任务。

每个模块,无论是主动的还是被动的,

我们都可以将它们组装
成不同的形状。

不仅如此,通过
控制折叠关节,

我们能够创建和攻击
不同的任务。

形式正在创造新的任务空间。

而这一次,最
重要的是大会。

他们需要根据环境和任务
在不同的空间中自主地找到彼此

、连接和分离

我们现在可以做到这一点。

下一个是什么?

我们的想象。

这是对使用此类模块
可以实现的目标的模拟

我们
决定让四足爬行者

变成一只小狗
并做出小步态。

使用相同的模块,我们实际上
可以让它做其他事情:

一个机械手,一个典型的、
经典的机器人任务。

因此,使用机械手,
它可以拾取物体。

当然,您可以添加更多模块
,使机械手腿更长,

以攻击或拾取
更大或更小的物体,

甚至还有第三条手臂。

对于机器人游戏,
没有固定的形状或任务。

他们可以随时随地变成任何东西

那么你是如何制作它们的呢?

robogami 最大的技术挑战
是保持它们超薄、

灵活,

但仍然保持功能。

它们由
多层电路、电机、

微控制器和传感器组成,

全部集成在一个机身中

,当您控制
单个折叠关节时,

您将能够根据您的命令实现
类似的软动作

robogamis 不是
专门为单个任务制造的单个机器人,

而是经过优化以执行多任务。

对于地球和太空中艰难而独特的
环境非常重要

太空是
机器人游戏的完美环境。

你不能让
一台机器人完成一项任务。

谁知道
你会在太空中遇到多少任务?

您想要的是
一个可以转换为执行多任务的单一机器人平台。

我们想要的是一

组可以转换为执行
多个执行任务的薄 robogami 模块。

不要相信我的话,

因为欧洲航天局
和瑞士航天中心

正在赞助这个确切的概念。

所以在这里你会看到一些
重新配置 robogamis 的图像,

探索
地上、地表的异国土地,

以及挖掘地表。

这不仅仅是探索。

对于宇航员来说,他们需要额外的帮助,

因为你也负担不起
把实习生带到那里。

(笑声)

他们必须完成每一项繁琐的任务。

它们可能很简单,

但超级互动。

因此,您需要机器人
来促进他们的实验,

协助他们进行通信,

并且只是停靠在表面上,成为
他们拿着不同工具的第三只手臂。

但是他们将
如何控制机器人游戏,例如,

在空间站外?

在这种情况下,我展示了一个持有空间碎片的机器人游戏

你可以使用你的
视觉来控制它们,

但更好的

直接将触觉传递到
宇航员的手上。

而你需要的是一个触觉设备,

一个能够重现触觉的触觉界面

使用 robogamis,我们可以做到这一点。

这是世界上
最小的触觉界面

,可以
在您的指尖下方重现触感。

我们通过在舞台上通过微观和宏观运动来移动 robogami 来做到这一点

有了它,
你不仅能感受到

物体有多大

,圆度和线条,

还有刚度和质感。

Alex 的拇指下方有这个界面

,如果他将这个界面
与 VR 护目镜和手控制器一起使用,

现在虚拟
现实不再是虚拟的。

它成为有形的现实。 他看着

的蓝球、红球
和黑球,

已经不再以颜色来区分了。

现在是橡胶蓝球、
海绵红球和台球黑球。

现在这是可能的。

我来给你展示。

这真的是第一次

在公众的大观众面前现场直播,

所以希望这能奏效。

所以你在这里看到的
是解剖图集

和 robogami 触觉界面。

因此,就像所有其他
可重构机器人一样,

它可以执行多项任务。

它不仅可以用作鼠标,

还可以用作触觉界面。

例如,我们有一个
没有对象的白色背景。

这意味着没有什么感觉,

所以我们可以拥有一个非常
非常灵活的界面。

现在,我用它作为鼠标
来接近皮肤

,肌肉发达的手臂,

所以现在让我们感受一下他的二头肌

或肩膀。

所以现在你看到
它变得多么僵硬。

让我们进一步探索。

让我们接近胸腔。

而当我移动
到胸腔顶部

和肋间肌之间

,更软更硬,

我能感觉到
僵硬的不同。

相信我的话。

所以现在你看到了,

它回馈给我指尖的力要硬得多。

所以我向你展示
了不移动的表面。

如果我要接近
一些移动的东西,

例如,像一颗跳动的心脏,怎么样?

我会有什么感觉?

(掌声)

这可以是你跳动的心脏。 当您在线购物时,

这实际上可以放在您的口袋里

现在您将能够
感受到您购买的毛衣的不同之处,

它有多柔软,

是否真的是羊绒,

或者您要购买的百吉饼,

它有多硬或有多脆 是。

现在这是可能的。

机器人技术正在朝着
更加个性化和适应性的方向发展,

以适应我们的日常需求。

这种独特
的可重构

机器人实际上是提供
这种看不见的、直观的界面

来满足我们确切需求的平台。

这些机器人将不再像
电影中的角色。

相反,它们将成为
您希望它们成为的任何东西。

谢谢你。

(掌声)