You are more transparent than you think Sajan Saini

It’s an increasingly common sight
in hospitals around the world:

a nurse measures our height,
weight, blood pressure,

and attaches a glowing plastic
clip to our finger.

Suddenly, a digital screen reads out
the oxygen level in our bloodstream.

How did that happen?

How can a plastic clip learn something
about our blood…

without a blood sample?

Here’s the trick:

our bodies are translucent,

meaning they don’t completely
block and reflect light.

Rather, they allow some light to actually
pass through our skin,

muscles, and blood vessels.

Don’t believe it?

Hold a flashlight to your thumb.

Light, it turns out, can help probe the
insides of our bodies.

Consider that medical fingerclip—

it’s called a pulse oximeter.

When you inhale, your lungs transfer
oxygen into hemoglobin molecules,

and the pulse oximeter measures the ratio
of oxygenated to oxygen-free hemoglobin.

It does this by using a tiny red LED light
on one side of the fingerclip,

and a small light detector on the other.

When the LED shines into your finger,

oxygen-free hemoglobin in your blood
vessels absorbs the red light

more strongly than its oxygenated
counterpart.

So the amount of light that makes
it out the other side

depends on the concentration ratio
of the two types of hemoglobin.

But any two patients will have different-sized
blood vessels in their fingers.

For one patient, a saturation reading of
ninety-five percent

corresponds to a healthy oxygen level,

but for another with smaller arteries,

the same reading could dangerously
misrepresent the actual oxygen level.

This can be accounted for with a second
infrared wavelength LED.

Light comes in a vast spectrum
of wavelengths,

and infrared light lies just beyond
the visible colors.

All molecules, including hemoglobin,

absorb light at different efficiencies
across this spectrum.

So contrasting the absorbance of red
to infrared light

provides a chemical fingerprint to
eliminate the blood vessel size effect.

Today, an emerging medical sensor industry
is exploring all-new degrees

of precision chemical fingerprinting,

using tiny light-manipulating devices
no larger than a tenth of a millimeter.

This microscopic technology,

called integrated photonics,

is made from wires of silicon
that guide light—

like water in a pipe—

to redirect, reshape, even
temporarily trap it.

A ring resonator device,
which is a circular wire of silicon,

is a light trapper that enhances chemical
fingerprinting.

When placed close to a silicon wire,

a ring siphons off and temporarily stores
only certain waves of light—

those whose periodic wavelength
fits a whole number of times

along the ring’s circumference.

It’s the same effect at work when
we pluck guitar strings.

Only certain vibrating patterns dominate
a string of a particular length,

to give a fundamental
note and its overtones.

Ring resonators were originally
designed

to efficiently route different
wavelengths of light—

each a channel of digital data—

in fiber optics communication networks.

But some day this kind of data
traffic routing

may be adapted for miniature chemical
fingerprinting labs,

on chips the size of a penny.

These future labs-on-a-chip may easily,
rapidly,

and non-invasively detect a host
of illnesses,

by analyzing human saliva or sweat
in a doctor’s office

or the convenience of our homes.

Human saliva in particular

mirrors the composition of our bodies’
proteins and hormones,

and can give early-warning signals for
certain cancers

and infectious and autoimmune diseases.

To accurately identify an illness,

labs-on-a-chip may rely on
several methods,

including chemical fingerprinting,

to sift through the large mix of trace
substances in a sample of spit.

Various biomolecules in saliva absorb
light at the same wavelength—

but each has a distinct chemical
fingerprint.

In a lab-on-a-chip, after the light passes
through a saliva sample,

a host of fine-tuned rings

may each siphon off a slightly different
wavelength of light

and send it to a partner light detector.

Together, this bank of detectors will
resolve

the cumulative chemical fingerprint
of the sample.

From this information,
a tiny on-chip computer,

containing a library of chemical
fingerprints for different molecules,

may figure out their relative
concentrations,

and help diagnose a specific illness.

From globe-trotting communications
to labs-on-a-chip,

humankind has repurposed light to both
carry and extract information.

Its ability to illuminate continues
to astonish us with new discoveries.


在世界各地的医院中越来越普遍

:护士测量我们的身高、
体重、血压,

并将发光的塑料
夹夹在我们的手指上。

突然,一个数字屏幕读出
了我们血液中的氧气含量。

那是怎么发生的? 没有血样,

塑料夹怎么能了解我们

的血液?

诀窍是:

我们的身体是半透明的,

这意味着它们不会完全
阻挡和反射光线。

相反,它们允许一些光真正
穿过我们的皮肤、

肌肉和血管。

不相信?

将手电筒放在拇指上。

事实证明,光可以帮助探测
我们身体的内部。

想想那个医用指夹——

它被称为脉搏血氧仪。

当你吸气时,你的肺将
氧气转移到血红蛋白分子中

,脉搏血氧仪测量
含氧血红蛋白与无氧血红蛋白的比例。

它通过在指夹一侧使用一个微小的红色 LED 灯和
在另一侧使用

一个小型光检测器来实现这一点。

当 LED 照射到您的手指时,

血管中的无氧血红蛋白

比含氧血红蛋白更强烈地吸收红光

所以从另一边射出的光量

取决于两种血红蛋白的浓度比

但是任何两名患者的手指中都会有不同大小的
血管。

对于一名患者,百分之九十五的饱和度读数

对应于健康的氧气水平,

但对于另一名动脉较小的患者

,相同的读数可能会危险地
歪曲实际的氧气水平。

这可以通过第二个
红外波长 LED 来解决。

光的波长范围很广

而红外光刚好
在可见颜色之外。

所有分子,包括血红蛋白,在这个光谱中

以不同的效率吸收光

因此,对比红光
与红外光的吸光度

可提供化学指纹,以
消除血管尺寸效应。

今天,一个新兴的医疗传感器行业
正在探索全新程度

的精确化学指纹,

使用
不超过十分之一毫米的微型光操纵设备。

这种

被称为集成光子学的微观技术

是由硅线制成的,这些硅线
可以引导光——

就像管道中的水

——重定向、重塑,甚至
暂时捕获光。

环形谐振器
设备是一种圆形硅线,

是一种增强化学指纹识别的光捕获器

当靠近硅线放置时

,环会虹吸并暂时存储
仅某些光波——

那些其周期性波长
与环圆周相匹配的整数倍的光波

当我们拨动吉他弦时,效果也是一样的

只有特定的振动模式支配
特定长度的弦,

才能给出基本
音符及其泛音。

环形谐振器最初
设计

用于在光纤通信网络中有效地路由不同
波长的光——

每个都是数字数据通道

但有一天,这种数据
流量路由

可能会适用于微型化学
指纹实验室

,芯片大小只有一美分。

这些未来的芯片实验室可以通过分析医生办公室或我们家中的人类唾液或汗液,轻松、
快速

、无创地检测出
许多疾病

人类唾液尤其

反映了我们身体
蛋白质和激素的组成,

并且可以为
某些癌症

以及传染病和自身免疫性疾病提供预警信号。

为了准确识别疾病,

芯片实验室可能依靠

包括化学指纹识别在内的多种方法

来筛选
唾液样本中的大量微量物质混合物。

唾液中的各种生物分子吸收
相同波长的光——

但每个分子都有不同的化学
指纹。

在芯片实验室中,光
通过唾液样本后

,许多微调环

可能会分别吸出稍微不同
波长的光

并将其发送到合作伙伴的光检测器。

这组检测器将共同
解析样本

的累积化学
指纹。

从这些信息中,

包含
不同分子化学指纹库的微型片上计算机

可以计算出它们的相对
浓度,

并帮助诊断特定疾病。

从环球通信
到芯片实验室,

人类已经重新利用光来
携带和提取信息。

它的照明能力继续
以新的发现使我们感到惊讶。