Could we survive prolonged space travel Lisa Nip

Prolonged space travel takes
a severe toll on the human body.

Microgravity impairs muscle
and bone growth,

and high doses of radiation
cause irreversible mutations.

As we seriously consider the human
species becoming space-faring,

a big question stands.

Even if we break free
from Earth’s orbit

and embark on long-duration
journeys among the stars,

can we adapt to the extreme
environments of space?

This won’t be the first time that humans
have adapted to harsh environments

and evolved superhuman capabilities.

Not fantastical powers like laser vision
or invisibility,

but physiological adaptations
for survival in tough conditions.

For example, on the Himalayan mountains

where the highest elevation
is nine kilometers above sea level,

an unacclimated lowland human
will experience symptoms of hypoxia,

commonly known as mountain sickness.

At these altitudes, the body usually
produces extra red blood cells,

thickening the blood
and impeding its flow.

But Himalayans who have lived on
these mountains for thousands of years

permanently evolved mechanisms
to circumvent this process

and maintain normal blood flow.

Cases like that prove that humans
can develop permanent lifesaving traits.

But natural adaptation
for entire human populations

could take tens of thousands of years.

Recent scientific advances may help us
accelerate human adaptation

to single generations.

To thrive as a species
during space travel,

we could potentially develop methods

to quickly program protective abilities
into ourselves.

A beta version of these methods
is gene therapy,

which we can currently use to correct
genetic diseases.

Gene editing technology,
which is improving rapidly,

allows scientists to directly change
the human genome

to stop undesirable processes
or make helpful substances.

An example of an unwanted process

is what happens when our bodies
are exposed to ionizing radiation.

Without an atmospheric barrier
and a magnetic field like Earth’s,

most planets and moons are bombarded
with these dangerous subatomic particles.

They can pass through nearly anything

and would cause potentially cancerous
DNA damage to space explorers.

But what if we could turn the tables
on radiation?

Human skin produces a pigment
called melanin

that protects us from the filtered
radiation on Earth.

Melanin exists in many forms
across species,

and some melanin-expressing fungi

use the pigment to convert radiation
into chemical energy.

Instead of trying to shield
the human body,

or rapidly repair damage,

we could potentially engineer humans

to adopt and express these fungal,
melanin-based energy-harvesting systems.

They’d then convert radiation into
useful energy while protecting our DNA.

This sounds pretty sci-fi,

but may actually be achievable
with current technology.

But technology isn’t the only obstacle.

There are ongoing debates
on the consequences

and ethics of such radical alterations
to our genetic fabric.

Besides radiation,

variation in gravitational strength
is another challenge for space travelers.

Until we develop artificial gravity
in a space ship or on another planet,

we should assume that astronauts
will spend time living in microgravity.

On Earth, human bone and muscle
custodial cells

respond to the stress
of gravity’s incessant tugging

by renewing old cells in processes
known as remodeling and regeneration.

But in a microgravity environment
like Mars,

human bone and muscle cells
won’t get these cues,

resulting in osteoporosis
and muscle atrophy.

So, how could we provide
an artificial signal for cells

to counteract bone and muscle loss?

Again, this is speculative,

but biochemically engineered microbes
inside our bodies

could churn out bone and muscle
remodeling signaling factors.

Or humans could be genetically engineered

to produce more of these signals
in the absence of gravity.

Radiation exposure and microgravity
are only two of the many challenges

we will encounter in the hostile
conditions of space.

But if we’re ethically prepared
to use them,

gene editing and microbial engineering
are two flexible tools

that could be adapted to many scenarios.

In the near future, we may decide
to further develop

and tune these genetic tools
for the harsh realities of space living.

长时间的太空旅行
会对人体造成严重伤害。

微重力会损害肌肉
和骨骼的生长

,高剂量的辐射
会导致不可逆转的突变。

当我们认真考虑
人类进入太空时,

一个大问题出现了。

即便我们
脱离地球轨道

,踏上
星际间的长途旅行,

我们能适应太空的极端
环境吗?

这将不是人类第一次
适应恶劣的环境

并进化出超人的能力。

不是像激光视觉或隐形这样的神奇力量

而是
在恶劣条件下生存的生理适应。

例如,在

海拔最高海拔 9 公里的喜马拉雅山脉上,

一个未适应气候的低地人类
会出现缺氧症状,即

俗称的高山病。

在这些海拔高度,身体通常
会产生额外的红细胞,

使血液变稠
并阻碍其流动。

但是在
这些山上生活了数千年的喜马拉雅人

永久进化出机制
来规避这个过程

并维持正常的血液流动。

像这样的案例证明,人类
可以发展出永久性的救生特征。


整个人类的自然适应

可能需要数万年的时间。

最近的科学进步可能会帮助我们
加速人类

对单代的适应。

为了在太空旅行中作为一个物种茁壮成长

我们可能会开发出方法

来快速将保护能力编程
到我们自己身上。

这些方法的测试版
是基因疗法

,我们目前可以用它来纠正
遗传疾病。

正在迅速改进的基因编辑技术

使科学家能够直接
改变人类基因组

以阻止不良过程
或制造有用的物质。

当我们的
身体暴露在电离辐射下时,会发生不需要的过程的一个例子。

如果没有
像地球那样的大气屏障和磁场,

大多数行星和卫星都会
受到这些危险的亚原子粒子的轰炸。

它们几乎可以穿过任何东西,

并且会对太空探索者造成潜在的癌性
DNA 损伤。

但是,如果我们能
在辐射方面扭转局面呢?

人体皮肤会产生一种
叫做黑色素

的色素,它可以保护我们免受地球上过滤后的
辐射。

黑色素在物种间以多种形式存在

,一些表达黑色素的真菌

利用色素将辐射
转化为化学能。

与其试图
保护人体

或快速修复损伤,

我们可以潜在地设计人类

来采用和表达这些基于真菌的、
基于黑色素的能量收集系统。

然后他们会将辐射转化为
有用的能量,同时保护我们的 DNA。

这听起来很科幻,

但实际上可以
通过当前的技术实现。

但技术并不是唯一的障碍。

关于
对我们的基因结构

进行这种彻底改变的后果和伦理问题,目前正在进行辩论

除了辐射之外,

引力强度的变化
是太空旅行者面临的另一个挑战。

在我们
在太空船或另一个星球上开发出人造重力之前,

我们应该假设宇航员
会花时间生活在微重力环境中。

在地球上,人类骨骼和肌肉的
保管细胞

通过在称为重塑和再生的过程中更新旧细胞来应对重力不断拉扯的压力

但在火星这样的微重力环境中

人体骨骼和肌肉细胞
不会得到这些线索,

从而导致骨质疏松
和肌肉萎缩。

那么,我们如何
为细胞提供人工信号

来抵消骨骼和肌肉损失呢?

同样,这是推测性的,

但我们体内的生化工程微生物

可以产生骨骼和肌肉
重塑信号因子。

或者人类可以通过基因工程

在没有重力的情况下产生更多的这些信号。

辐射暴露和微重力
只是

我们将在
恶劣的太空条件下遇到的众多挑战中的两个。

但是,如果我们在道德上准备
好使用它们,

基因编辑和微生物工程
是两个

可以适应许多情况的灵活工具。

在不久的将来,我们可能会
决定进一步开发

和调整这些基因工具,
以应对太空生活的严酷现实。