How germs travel on planes and how we can stop them Raymond Wang

Can I get a show of hands –

how many of you in this room
have been on a plane in this past year?

That’s pretty good.

Well, it turns out that you
share that experience

with more than three billion
people every year.

And when we put so many people
in all these metal tubes

that fly all over the world,

sometimes, things like this can happen

and you get a disease epidemic.

I first actually got into this topic

when I heard about the Ebola
outbreak last year.

And it turns out that,

although Ebola spreads
through these more range-limited,

large-droplet routes,

there’s all these other sorts of diseases

that can be spread in the airplane cabin.

The worst part is, when we take
a look at some of the numbers,

it’s pretty scary.

So with H1N1,

there was this guy that decided
to go on the plane

and in the matter of a single flight

actually spread the disease
to 17 other people.

And then there was this
other guy with SARS,

who managed to go on a three-hour flight

and spread the disease to 22 other people.

That’s not exactly my idea
of a great superpower.

When we take a look at this,
what we also find

is that it’s very difficult
to pre-screen for these diseases.

So when someone actually
goes on a plane,

they could be sick

and they could actually
be in this latency period

in which they could actually
have the disease

but not exhibit any symptoms,

and they could, in turn,
spread the disease

to many other people in the cabin.

How that actually works is that right now

we’ve got air coming in
from the top of the cabin

and from the side of the cabin,
as you see in blue.

And then also, that air goes out
through these very efficient filters

that eliminate 99.97 percent
of pathogens near the outlets.

What happens right now, though,

is that we have this
mixing airflow pattern.

So if someone were to actually sneeze,

that air would get swirled
around multiple times

before it even has a chance
to go out through the filter.

So I thought: clearly, this
is a pretty serious problem.

I didn’t have the money
to go out and buy a plane,

so I decided to build a computer instead.

It actually turns out that
with computational fluid dynamics,

what we’re able to do
is create these simulations

that give us higher resolutions

than actually physically going
in and taking readings in the plane.

And so how, essentially, this works
is you would start out

with these 2D drawings –

these are floating around
in technical papers around the Internet.

I take that and then I put it
into this 3D-modeling software,

really building that 3D model.

And then I divide that model
that I just built into these tiny pieces,

essentially meshing it so that
the computer can better understand it.

And then I tell the computer where
the air goes in and out of the cabin,

throw in a bunch of physics

and basically sit there and wait until
the computer calculates the simulation.

So what we get, actually,
with the conventional cabin is this:

you’ll notice the middle person sneezing,

and we go “Splat!” – it goes
right into people’s faces.

It’s pretty disgusting.

From the front, you’ll notice
those two passengers

sitting next to the central passenger

not exactly having a great time.

And when we take a look
at that from the side,

you’ll also notice those pathogens
spreading across the length of the cabin.

The first thing I thought was,
“This is no good.”

So I actually conducted
more than 32 different simulations

and ultimately, I came up
with this solution right here.

This is what I call a – patent pending –
Global Inlet Director.

With this, we’re able to reduce
pathogen transmission

by about 55 times,

and increase fresh-air inhalation
by about 190 percent.

So how this actually works

is we would install this piece
of composite material

into these existing spots
that are already in the plane.

So it’s very cost-effective to install

and we can do this directly overnight.

All we have to do is put a couple
of screws in there and you’re good to go.

And the results that we get
are absolutely amazing.

Instead of having those problematic
swirling airflow patterns,

we can create these walls of air

that come down in-between the passengers

to create personalized breathing zones.

So you’ll notice the middle passenger
here is sneezing again,

but this time, we’re able
to effectively push that down

to the filters for elimination.

And same thing from the side,

you’ll notice we’re able to directly
push those pathogens down.

So if you take a look again now
at the same scenario

but with this innovation installed,

you’ll notice the middle
passenger sneezes,

and this time, we’re pushing
that straight down into the outlet

before it gets a chance
to infect any other people.

So you’ll notice the two passengers
sitting next to the middle guy

are breathing virtually
no pathogens at all.

Take a look at that from the side as well,

you see a very efficient system.

And in short, with this system, we win.

When we take a look at what this means,

what we see is that this not only works
if the middle passenger sneezes,

but also if the window-seat
passenger sneezes

or if the aisle-seat passenger sneezes.

And so with this solution, what does
this mean for the world?

Well, when we take a look at this

from the computer simulation
into real life,

we can see with this 3D model
that I built over here,

essentially using 3D printing,

we can see those same
airflow patterns coming down,

right to the passengers.

In the past, the SARS epidemic
actually cost the world

about 40 billion dollars.

And in the future,

a big disease outbreak
could actually cost the world

in excess of three trillion dollars.

So before, it used to be that you had
to take an airplane out of service

for one to two months,

spend tens of thousands of man hours
and several million dollars

to try to change something.

But now, we’re able to install
something essentially overnight

and see results right away.

So it’s really now a matter of taking
this through to certification,

flight testing,

and going through all of these
regulatory approvals processes.

But it just really goes to show
that sometimes the best solutions

are the simplest solutions.

And two years ago, even,

this project would not have happened,

just because the technology then
wouldn’t have supported it.

But now with advanced computing

and how developed our Internet is,

it’s really the golden era for innovation.

And so the question I ask all
of you today is: why wait?

Together, we can build the future today.

Thanks.

(Applause)

我可以举手

吗?在这个房间里
有多少人在过去的一年里坐过飞机?

这很不错。

好吧,事实证明,您每年

与超过 30 亿
人分享这种经验。

当我们把这么多人
放在

这些遍布世界各地的金属管里时,

有时,这样的事情就会发生

,你就会患上疾病流行病。 当我去年听说埃博拉病毒爆发时,

我第一次真正进入这个话题

事实证明,

尽管埃博拉病毒
通过这些范围更有限的

大液滴传播途径传播,

但所有这些其他类型的疾病

都可以在机舱内传播。

最糟糕的是,当
我们看一些数字时,

它非常可怕。

所以对于 H1N1,

有一个人
决定上飞机

,在一次飞行的问题上,

实际上将这种疾病传播
给了 17 个人。

然后是
另一个患有 SARS 的人,

他设法进行了三个小时的飞行

,并将这种疾病传播给了另外 22 个人。

这不完全是我
对超级大国的看法。

当我们看这个时,
我们还发现


对这些疾病进行预筛查是非常困难的。

因此,当某人
真的上了飞机时,

他们可能生病了

,他们实际上
可能处于潜伏期,在这个潜伏期

中,他们实际上可能
患有疾病

但没有表现出任何症状

,反过来,他们可能
会将疾病传播

给许多其他人 在机舱内。

实际工作原理是,现在

我们已经
从机舱顶部

和机舱侧面进入空气,
正如您在蓝色中看到的那样。

然后,空气
通过这些非常有效的过滤器排出,这些过滤

器可以消除
出口附近 99.97% 的病原体。

然而,现在发生的

是我们有这种
混合气流模式。

因此,如果有人

真的打喷嚏,空气会

在它有
机会通过过滤器排出之前被多次旋转。

所以我想:显然,这
是一个相当严重的问题。

我没有
钱出去买飞机,

所以我决定造一台电脑。

事实证明,
通过计算流体动力学,

我们能够做的
是创建这些模拟

,为我们提供

比实际
进入飞机并在飞机上读取数据更高的分辨率。

那么,从本质上讲,这是如何工作
的,您将从

这些 2D 图纸开始——这些图纸

在互联网上的技术论文中四处流传。

我把它
放进这个 3D 建模软件中,

真正构建那个 3D 模型。

然后我
将我刚刚构建的模型分成这些小块,

基本上将其网格化,
以便计算机可以更好地理解它。

然后我告诉计算机
空气从哪里进出机舱,

扔进一堆物理,

然后基本上坐在那里
等到计算机计算出模拟。

所以我们得到的,实际上,
与传统的小屋是这样的:

你会注意到中间人打喷嚏

,我们去“Splat!” ——它
直接进入人们的脸上。

真恶心。

从前面看,您会注意到

坐在中央乘客旁边的那两名乘客并

没有玩得很开心。

当我们
从侧面观察时,

您还会注意到这些病原体
遍布整个机舱。

我首先想到的是,
“这不好。”

所以我实际上进行
了超过 32 次不同的模拟

,最终,我在
这里想出了这个解决方案。

这就是我所说的——正在申请专利的
——Global Inlet Director。

有了这个,我们能够将
病原体传播

减少约 55 倍,

并将新鲜空气的吸入量
增加约 190%。

所以这实际上是如何工作

的,我们将把
这块复合材料安装


飞机上已经存在的这些现有点中。

所以安装起来非常划算

,我们可以直接在一夜之间完成。

我们所要做的就是
在里面放几个螺丝,你就可以走了。

我们得到的
结果绝对是惊人的。 我们可以创建这些空气墙,

而不是那些有问题的
旋转气流模式,

这些空气墙

会在乘客之间下降,

以创建个性化的呼吸区。

所以你会注意到这里的中间乘客
再次打喷嚏,

但这一次,我们
能够有效地将其推

到过滤器以消除。

从侧面看同样的事情,

你会注意到我们能够直接
将这些病原体推倒。

因此,如果您现在再次
查看相同的场景,

但安装了这项创新,

您会注意到中间
乘客打喷嚏,

而这一次,我们将
其直接推入出口

,以免它有
机会感染任何其他人 人们。

所以你会注意到
坐在中间那个人旁边的两名乘客

几乎没有呼吸
任何病原体。

也从侧面看一下,

您会看到一个非常有效的系统。

简而言之,有了这个系统,我们就赢了。

当我们看一下这意味着

什么时,我们看到的是,这不仅
适用于中间乘客打喷嚏,

而且如果靠窗座位的
乘客打喷嚏

或过道座位的乘客打喷嚏也有效。

那么有了这个解决方案,
这对世界意味着什么?

好吧,当我们从计算机模拟看这个

到现实生活中时,

我们可以
看到我在这里建立的这个 3D 模型,

本质上是使用 3D 打印,

我们可以看到同样的
气流模式下降

,直通乘客。

过去,非典疫情
实际上给世界造成了

大约400亿美元的损失。

而在未来,

一场大规模的疾病爆发
实际上可能给世界

造成超过 3 万亿美元的损失。

所以以前,你
不得不让一架飞机停飞

一到两个月,

花费数万工时
和数百万美元

来尝试改变一些东西。

但是现在,我们基本上可以在一夜之间安装
一些东西

并立即看到结果。

所以现在真的是把
它带到认证、

飞行测试

和通过所有这些
监管批准程序的问题。

但这确实表明
,有时最好的解决方案

是最简单的解决方案。

甚至在两年前,

这个项目也不会发生,

只是因为当时的技术
不会支持它。

但是现在有了先进的计算

和我们的互联网的发达程度,

这确实是创新的黄金时代。

所以我今天要问大家的问题
是:为什么要等?

今天,我们可以携手共建未来。

谢谢。

(掌声)