Travel to the Frontier of Science

Transcriber: Minh Le Quang
Reviewer: lisa thompson

Welcome to my talk.

I’m Yury Gogotsi.

I’m professor of Materials Science
at Drexel University,

and today I’m going to talk to you
about my travel in the world of science,

also my travel from Ukraine,

from work on corrosion
of structural ceramics,

which some of you may be able to read
on the cover of this book,

through many countries, many years,

to nanotechnology research,

to discovery of new materials

which are being researched nowadays

by thousands [of] scientists
over the entire world here.

But first, I know
we have a diverse audience here.

Let me talk about my profession,
about materials science.

You don’t need to be an expert
in materials science engineering

to know that the world
is made of materials.

From the Stone Age to the Silicon Age,

humans have crafted tools by carving
them out of first bone, stone,

then making them out of bronze, iron.

Today, we live in the silicon world.

All our electronic devices
are made using silicon chips here,

and we are pushing the world even further,

building them out of new materials,
creating materials, atom by atom here.

So those are types of things
my research group is doing here.

But let’s go back, actually -

back more than 40 years back -

to Kyiv, Ukraine,

at that time, former Soviet Union.

I know some of my students today,
even by the end of their PhD study,

are not decided
what to do with their life.

But to me, this decision came very early.

When I was in high school,
I got excited about chemistry.

I didn’t really need a textbook;

I could listen to my chemistry teacher,
and I would memorize everything.

So my father took me to chemistry club,

and probably starting from eighth grade,

I was in this chemistry club
doing crazy experiments.

I was throwing metallic sodium
into pools of water

and see how it explode.

I would work with mercury
or hydrofluoric acid,

something that, pretty much,
graduate students are not allowed to do

nowadays in most of university labs.

I would work with liquid metals,

actually creating metals out of oxides,

out of raw materials

at temperatures approaching 5000 degrees.

And well, it was maybe a little bit
dangerous, but it was exciting.

And I really loved chemistry.

I still do.

And naturally, after I graduated
from high school,

the decision was obvious:

I would go to study chemistry,

just like most of my friends
from the chemistry club.

And this is when I met
a first major challenge.

When I applied to Kyiv University
to study chemistry,

I was told I was not good enough

because I had some mild color blindness,

and I was told, no,

if you cannot distinguish colors clearly
enough, you cannot become a chemist.

So what did I do? I didn’t stop.

I actually went and learned
all these, like, tables

for checking on color blindness

to memorize them.

But by the time I was doing this,

I also found that there was
a metallurgy department

at another university in Kyiv,
Kyiv Polytechnic -

something dealing with high temperatures,
dealing with chemistry,

but chemistry at these extreme
temperatures I liked before,

so what I did, I went to study
at Kyiv Polytechnic.

I went to study high temperature,

working on high-performance
ceramic materials

that were designed for engines here.

It was very exciting,
very interesting here.

When I graduated, I continued towards PhD,

and in 1990, when Gorbachev came
and started perestroika,

I was among the first ones
to go to see the world.

I went to Germany.

I went, afterwards, to Japan

to see how Japanese
make the best functional ceramics.

And Japan was exciting experience.

And I would recommend
everyone who wants to become a scientist,

everyone who wants to work
at the cutting edge of engineering,

to go and explore different
countries, different places.

In the Soviet Union,
I could not really travel much,

I could not see the world.

As a postdoc, I was able to see the world.

I was able to travel here.

And, actually, Japan was great.

I published my first paper in Nature.

I made a very important finding.

And for scientists,
publishing paper in Nature

is like if a mountaineer
climbing Mount Everest -

getting to the very, very top here.

But I actually did not feel like in Japan
I had enough freedom to do what I want.

And this may sound surprising

for a guy coming from a very, very
restrictive country, Soviet Union -

at the time, actually,
Ukraine was still part of the Soviet Union

when I studied.

Japan, not enough freedom.

But it’s a very traditional country,

where seniority defines
pretty much everything.

So I decided to go back to Europe.

I went to work in Norway.

I went to Germany again.

And the time actually came to decide
where I wanted to build my career.

After traveling around the world,

after visiting
United States several times,

I actually realized

that the best opportunities
will be offered to me in the U.S.

And the main reason is
that I was looking really for opportunity,

not just follow someone else’s
path in research;

I want to do something different.

I didn’t want anyone
to tell me what to do.

And that’s exactly what U.S.
academic system offers actually here.

As an assistant professor,

I would be able to do everything -

what I wanted -

as long as I could get funding
to do what I wanted here.

So, what I did, I started
to apply for positions.

And as you can imagine,

and anyone who applied
for jobs knows probably,

you get rejections.

You have to learn
to get lots of rejections.

But finally,

I got an invitation
to fly from Europe to the U.S.

for an interview
at a very good university here.

And actually, I did fly there.

I went for an interview,

and I failed it spectacularly.

I had no clue what was expected
from a professor in the U.S.,

and I didn’t get discouraged here.

What I did, I learned.

I succeeded in my next interview.

However, I didn’t still get an offer,

and the reason was because
I was in a somewhat different field

and the university
was looking for someone else.

What happened?

Actually, a couple of weeks later,

I got an email
from Professor Selçuk Güçeri

from another university -

University of Illinois in Chicago,
where I got my first faculty position -

with a question:

Yury, I know you applied elsewhere.

Would you be also interested
to consider our university?

I came.

I got a job offer.

I moved [to] Chicago in 1996 here

and started to work
on nanomaterials there:

first carbon nanomaterials,
making carbon nanotubes,

non-porous carbon,
discovering new materials,

finding applications
for those new materials,

basically having fun with science,

doing discovery science,

discovering materials
that I wanted to discover here.

And in 2000, I moved
to Drexel University.

After four years, what normally takes
basically about a decade,

I got a full professor position,

actually, on the invitation
of same professor, Selçuk Güçeri,

who, some of you affiliated
with Drexel University know,

has been a very successful
dean of engineering

after he moved from USC to Drexel here.

And I’ve been at Drexel for 20 years now.

And a decade ago, we discovered,
with my colleagues at Drexel University,

an entirely new family of materials here,

and this will be the next thing
I’m going to talk about.

But before that, I just want to tell
people who may come from other countries,

who may come from this country but some
underprivileged neighborhoods,

difficult situation here:

If you have a dream,
if you love something,

simply never, never, never give up;
you are going to succeed.

You will overcome many difficulties,
but if you have a goal, you will succeed.

And I still get failures:

my proposals for findings get rejected,
my papers get rejected.

I got paper rejected by Nature magazine
just a couple of days ago.

And I know it’s great science,

and I’m going to fight
to get it published here.

But you should not stop here.

Now, let me tell you
a little bit about science we do,

about science of two-dimensional
materials, nanomaterials.

It, actually, to a large extent,

started in 2004 with discovery
made by other scientists:

Andre Geim and Konstantin Novoselov

at the University
of Manchester in U.K.,

who showed that monoatomic
layers of graphene,

basically materials
made of single layer of atoms -

invisible, virtually, here -

have very unusual properties.

They got a Nobel Prize
in 2010 for it here.

But what it did -

actually tell other scientists

that it’s possible to build materials
which are like a sheet of paper,

but made of single atoms,

which are thousands of times thinner
than a sheet of paper,

and use this material
to build new materials and new technology.

Now, imagine, if you like
to play with Lego bricks

and if you are given
Lego bricks of one type -

all of them blacks, all of them same -

you can do something,
but it’s not much fun.

And now imagine you can get Lego bricks
of all possible colors,

of all possible sizes.

And this is largely what we did
by discovering MXenes,

which showed that there are
materials that are metallic

and even more conducting,

better conductors of electricity
than graphene films,

but they come in different colors,
in different thicknesses.

You can see, for example, the red dots
in this picture, those are single atoms,

and they have one layer, two layers,
three layers, four layers,

five layers, nine layers, eleven layers.

We can basically build new technology.

We can make materials which have not been
known before, which didn’t exist before.

We can combine them
and then build entire devices

by simply assembling those tiny layers
into something much bigger, very useful.

We can make new types of batteries.

We can filter water
and remove salt from water

and give drinking water to people.

We can make sensors, which will sense,
for example, contamination environment.

We can make something else
which will be useful -

for example, deliver medicines here.

And what we actually do,
going from graphene to MXenes,

we are trying to solve useful problems.

So, what do materials scientists do?

They discover materials.

But the next step is [to] find
where those materials can be used.

So what we’re doing, we’re trying
to use these materials for energy:

generation, storing, better batteries,

batteries that charge faster,
store more energy,

desalinate water,

make sensors that will sense
spoilage of food,

but also prevent degradation
of food in packaging

and make food stay good longer.

We can clean air
and desalinate or purify water,

We can also deliver drugs.

For example, in my group, we are working
on building artificial kidney,

using Mxenes that we can save life
of patients and improve quality of life -

patients who suffer
from acute kidney disease.

And of course, there are many other
potential applications here.

Also, we are trying to not only improve
the current technology,

we’re trying to build future technologies.

I don’t know what your vision
of the future of technology is,

but I see many technologies
becoming flexible, wearable,

connected in the Internet of Things,

using renewable energy
or harvesting energy from our movements

along with sun, wind,
and other things here.

So what we are trying to do
is to use these 2-D materials

to build flexible devices,

incorporate devices into clothes
that we wear every day here.

So, basically take electronics

from separate, large, bulky mobile phones,

computers, laptops, large screens

into something that will be with us
all the time here -

basically the next world in technology.

And those things are truly exciting

because we feel
we can make a difference here.

But what is also important
is that science is beautiful.

I love chemistry. I love materials.

I love science the same way
I loved it when I was a high school kid.

I’m equally excited with every discovery,
every new material we make,

every change in the materials,

every way to create the material,
every new application here.

And we’re also trying to show the world

the beauty of science surrounding
this NanoArtography competition,

when we show people pictures
of the invisible world:

colored, creative.

And again, actually,
anyone can participate;

bring your picture,
send it to NanoArtography,

and you may win a prize
and see your pictures in calendar

and online anywhere here.

So, I still continue following my dream
of material discovery,

of using chemistry to make materials
that can improve technology,

improve life, improve environment,
improve health of people.

And I wish all of you the same.

Follow your dream, believe in yourself,
and never, never, never give up.

Thank you.

抄写员:Minh Le Quang
审稿人:lisa thompson

欢迎来到我的演讲。

我是尤里·戈戈西。

我是德雷克塞尔大学的材料科学
教授

,今天我要和你们
谈谈我在科学界的旅行,

也是我从乌克兰

来的旅行,从事结构陶瓷腐蚀方面的工作

,你们中的一些人可能是 能够
在这本书的封面上阅读,

穿越许多国家,许多年,

到纳米技术研究,

到发现

现在全世界成千上万的
科学家正在研究的新材料。

但首先,我知道
我们这里有不同的观众。

让我谈谈我的专业,
关于材料科学。

您无需
成为材料科学工程专家

即可知道世界
是由材料构成的。

从石器时代到硅时代,

人类通过
首先用骨头、石头雕刻工具,

然后用青铜和铁制作工具来制作工具。

今天,我们生活在硅世界。

我们所有的电子设备
都是在这里使用硅芯片制造的

,我们正在进一步推动世界,

用新材料建造它们
,在这里一个原子一个原子地创造材料。

所以这些是
我的研究小组在这里做的事情。

但实际上,让我们

回到 40 多年前的

乌克兰基辅,

当时的前苏联。

我知道我今天的一些学生,
即使在他们的博士学习结束时,

还没有决定
如何度过他们的生活。

但对我来说,这个决定来得太早了。

当我在高中时,
我对化学很感兴趣。

我真的不需要教科书。

我可以听我的化学老师的话
,我会记住一切。

所以我父亲带我去了化学俱乐部

,大概从八年级开始,

我就在这个化学俱乐部
做着疯狂的实验。

我把金属钠
扔进水池

,看看它是如何爆炸的。

我会使用汞
或氢氟酸,

这是现在大多数大学实验室
不允许研究生做的事情

我会使用液态金属,

实际上是

在接近 5000 度的温度下用氧化物和原材料制造金属。

好吧,这可能有点
危险,但很令人兴奋。

我真的很喜欢化学。

我仍然。

当然,高中毕业后,我

的决定很明显:

我会去学习化学,

就像我
化学俱乐部的大多数朋友一样。

这是我
遇到第一个重大挑战的时候。

当我申请基辅
大学学习化学时,

我被告知我不够好,

因为我有一些轻微的色盲

,我被告知,不,

如果你不能足够清楚地区分颜色
,你就不能成为一名化学家。

那我做了什么? 我没有停下来。

我实际上去学习了
所有这些,比如

用于检查色盲的表格

以记住它们。

但是当我这样做的时候,

我还发现

基辅的另一所大学有一个冶金系,
Kyiv Polytechnic -

处理高温,
处理

化学,但是
我以前喜欢这些极端温度下的化学,

所以我 确实,我去
了基辅理工学院学习。

我去研究高温,研究

为这里的发动机设计的高性能陶瓷材料。

这里非常令人兴奋,
非常有趣。

毕业后,我继续攻读博士学位

,1990 年,当戈尔巴乔夫来
并开始改革时,

我是第一批
去见世界的人。

我去了德国。

之后,我去了日本

,看看日本人如何
制作最好的功能陶瓷。

日本是令人兴奋的经历。

我会推荐
每个想成为科学家的人,

每个想
在工程学前沿工作的人,

去探索不同的
国家、不同的地方。

在苏联,
我不能真正去旅行,

我看不到这个世界。

作为博士后,我能够看到这个世界。

我能够在这里旅行。

而且,实际上,日本很棒。

我在 Nature 上发表了我的第一篇论文。

我做了一个非常重要的发现。

对于科学家来说,
在《自然》杂志上发表论文

就像
登山者攀登珠穆朗玛峰——

到达这里的最高点。

但我实际上并不觉得在日本
我有足够的自由去做我想做的事。

对于一个来自一个非常非常严格的国家苏联的人来说,这听起来可能令人惊讶
——

实际上,在我学习的时候,
乌克兰仍然是苏联的一部分

日本,不够自由。

但这是一个非常传统的国家

,资历
几乎决定了一切。

所以我决定回欧洲。

我去挪威工作。

我又去了德国。

是时候决定
我想在哪里建立我的职业生涯了。

环游世界,

多次访问美国后,

我才真正

意识到,美国将给我提供最好的机会。

主要原因
是我真的在寻找机会,

而不是仅仅追随别人
的研究道路;

我想做一些不同的事情。

我不想让任何
人告诉我该怎么做。

这正是美国
学术体系在这里实际提供的。

作为一名助理教授,

我可以做任何事情——

我想做的——

只要我能得到资金
来做我想做的事情。

所以,我做了什么,我
开始申请职位。

正如你可以想象的那样

,任何
申请工作的人都可能知道,

你会被拒绝。

你必须
学会接受很多拒绝。

但最后,

我得到了
从欧洲飞到美国的邀请,去

这里一所非常好的大学面试。

实际上,我确实飞到了那里。

我去面试了,但

我失败了。

我不知道
对美国教授的期望是什么,在

这里我也没有气馁。

我做了什么,我学到了。

我下一次面试成功了。

然而,我还是没有拿到offer

,原因是
我在一个有点不同的领域

,大学
正在寻找其他人。

发生了什么?

实际上,几周后,

我收到了

来自另一所大学——

伊利诺伊大学芝加哥分校的 Selçuk Güçeri 教授的电子邮件,我在
那里获得了我的第一个教员职位——问

了一个问题:

Yury,我知道你申请了其他地方。

您是否也有
兴趣考虑我们的大学?

我来了。

我得到了一份工作机会。

1996 年我搬到芝加哥

,开始
在那里研究纳米材料:

首先是碳纳米材料,
制造碳纳米管,

无孔碳,
发现新材料,

寻找这些新材料的应用,

基本上是享受科学乐趣,

从事发现科学 ,

发现我想在这里发现的材料。

2000 年,我搬到
了德雷塞尔大学。

四年后,通常需要
十年左右,

我得到了一个正教授的职位,

实际上,
应同一位教授的邀请,塞尔丘克·古切

里,你们中的一些附属
于德雷塞尔大学的人都知道,

他是一位非常成功
的工程学院院长

在他从南加州大学搬到德雷克塞尔之后。

我已经在 Drexel 工作了 20 年。

十年前,我们
和我在德雷克塞尔大学的同事在

这里发现了一个全新的材料家族

,这将是
我接下来要谈论的事情。

但在此之前,我只想
告诉那些可能来自其他国家的

人,可能来自这个国家但一些
贫困社区的人,

这里的困境:

如果你有梦想,
如果你热爱某事,

那就永远不要,永远不要,永远不要 向上;
你会成功的。

你会克服很多困难,
但如果你有目标,你就会成功。

而且我仍然会失败:

我的调查建议被拒绝,
我的论文被拒绝。

就在几天前,我的论文被 Nature 杂志拒绝了

我知道这是一门伟大的科学

,我会
努力争取在这里发表。

但你不应该停在这里。

现在,让我告诉
你一些关于我们所做的科学,

关于二维
材料,纳米材料的科学。

实际上,它在很大程度上

始于 2004
年其他科学家的发现:英国曼彻斯特大学的

Andre Geim 和 Konstantin Novoselov

他们表明
石墨烯的单原子层,

基本上
是由单层原子组成的材料 -

不可见 ,实际上,在这里-

具有非常不寻常的特性。

他们
在这里获得了 2010 年的诺贝尔奖。

但它做了什么——

实际上告诉其他科学家

,有可能制造
出像一张纸

但由比一张纸薄数千倍的单个原子

构成的材料,并使用这种
材料制造新材料和 新技术。

现在,想象一下,如果你
喜欢玩乐高积木,

并且给你
一种类型的乐高积木——

全都是黑色的,全都一样——

你可以做点什么,
但这并不好玩。

现在想象一下,您可以获得
所有可能颜色

、所有可能尺寸的乐高积木。

这在很大程度上是我们
通过发现 MXenes 所做的,

这表明有些
材料是金属的

,甚至比石墨烯薄膜更具导电性、

更好的导电体

但它们有不同的颜色
、不同的厚度。

例如,你可以看到
这张图片中的红点,那些是单个原子

,它们有一层,两层,
三层,四层,

五层,九层,十一层。

我们基本上可以建立新技术。

我们可以制造
以前不为人知、以前不存在的材料。

我们可以将它们组合起来
,然后

通过简单地将这些微小的层组装
成更大、非常有用的东西来构建整个设备。

我们可以制造新型电池。

我们可以过滤水
,去除水中的盐分,

并为人们提供饮用水。

我们可以制造传感器,它可以感知
例如污染环境。

我们可以制造其他
有用的东西——

例如,在这里运送药品。

而我们实际上所做的
,从石墨烯到 MXenes,

我们正在尝试解决有用的问题。

那么,材料科学家是做什么的呢?

他们发现材料。

但下一步是 [to] 找到
可以使用这些材料的地方。

所以我们正在做的,我们正在
尝试将这些材料用于能源:

发电、储存、更好的

电池、充电更快的电池、
储存更多的能量、

淡化水、

制造能够感知
食物变质

并防止退化的传感器
包装中的食物

,使食物保持更长时间。

我们可以净化空气
,淡化或净化水,

我们还可以运送药物。

例如,在我的团队中,我们正在
研究构建人工肾,

使用 Mxenes 可以
挽救患者的生命并提高生活质量——

患有急性肾病的患者。

当然,这里还有许多其他
潜在的应用。

此外,我们不仅在努力
改进当前的技术,而且还在

努力构建未来的技术。

我不知道您
对技术未来的愿景是什么,

但我看到许多技术
变得灵活、可穿戴、

连接到物联网、

使用可再生能源
或从我们的运动中收集能量

以及太阳、风
和其他事物 这里。

所以我们正在尝试做的
是使用这些二维材料

来制造灵活的设备,

将设备融入
我们每天在这里穿的衣服中。

所以,基本上把电子产品

从单独的、大的、笨重的手机、

电脑、笔记本电脑、大屏幕

变成我们
一直在这里的东西——

基本上是下一个技术世界。

这些事情真的很令人兴奋,

因为我们觉得
我们可以在这里有所作为。

但同样重要的
是,科学是美丽的。

我喜欢化学。 我喜欢材料。

我喜欢科学,就像
我在高中时喜欢它一样。

我对每一个发现、
我们制造的每一种新材料、材料的

每一次改变、

每一种创造材料的方式以及
这里的每一个新应用都同样感到兴奋。

当我们向人们展示无形世界的图片时,我们还试图向世界展示

围绕这场 NanoArtography 竞赛的科学之美

彩色、创意。

再说一次,实际上,
任何人都可以参与;

带上您的照片,
将其发送到 NanoArtography

,您就有可能赢取奖品,
并在日历

和在线的任何地方查看您的照片。

所以,我仍然继续追寻
材料发现的梦想

,用化学制造
可以改善技术、

改善生活、改善环境、
改善人们健康的材料。

我希望你们所有人都一样。

追随你的梦想,相信自己
,永不放弃,永不放弃。

谢谢你。