How tall can a tree grow Valentin Hammoudi

Reaching heights of over 100 meters,

Californian sequoias tower over Earth’s
other estimated 60,000 tree species.

Growing in the misty Sierra Nevada
mountains,

their massive trunks support the
tallest known trees in the world.

But even these behemoths seem
to have their limits.

No sequoia on record has been able
to grow taller than 130 meters –

and many researchers say these
trees won’t beat that cap

even if they live for thousands of
years to come.

So what exactly is stopping these trees
from growing taller, forever?

It all comes down to sap.

In order for trees to grow,

they need to bring sugars obtained
from photosynthesis

and nutrients brought in through the root
system to wherever growth is happening.

And just like blood circulates in
the human body,

trees are designed to circulate two kinds
of sap throughout their bodies –

carrying all the substances a
tree’s cells need to live.

The first is phloem sap.

Containing the sugars generated in
leaves during photosynthesis,

phloem sap is thick, like honey,

and flows down the plant’s phloem tissue
to distribute sugar throughout the tree.

By the end of its journey,

the phloem sap has thinned
into a watery substance,

pooling at the base of the tree.

Right beside the phloem is the tree’s
other tissue type: the xylem.

This tissue is packed with nutrients and
ions like calcium, potassium, and iron,

which the tree has absorbed
through its roots.

Here at the tree’s base,

there are more of these particles in
one tissue than the other,

so the water from the phloem sap is
absorbed into the xylem

to correct the balance.

This process, called osmotic movement,

creates nutrient-rich xylem sap,

which will then travel up the trunk to
spread those nutrients through the tree.

But this journey faces a formidable
obstacle: gravity.

To accomplish this herculean task,
the xylem relies on three forces:

transpiration, capillary action,
and root pressure.

As part of photosynthesis, leaves open
and close pores called stomata.

These openings allow oxygen and carbon
dioxide in and out of the leaf,

but they also create an opening through
which water evaporates.

This evaporation, called transpiration,

creates negative pressure in the xylem,
pulling watery xylem sap up the tree.

This pull is aided by a fundamental
property of water called capillary action.

In narrow tubes,

the attraction between water molecules

and the adhesive forces between the water
and its environment can beat out gravity.

This capillary motion is in full effect
in xylem filaments

thinner than human hair.

And where these two forces pull the sap,

the osmotic movement at the tree’s
base creates root pressure,

pushing fresh xylem sap up the trunk.

Together these forces launch sap
to dizzying heights,

distributing nutrients, and growing new
leaves to photosynthesize –

far above the tree’s roots.

But despite these sophisticated systems,

every centimeter is a fight
against gravity.

As trees grow taller and taller,

the supply of these vital fluids
begins to dwindle.

At a certain height,

trees can no longer afford the lost water
that evaporates during photosynthesis.

And without the photosynthesis needed
to support additional growth,

the tree instead turns its resources
towards existing branches.

This model, known as the “hydraulic
limitation hypothesis,”

is currently our best explanation for why
trees have limited heights,

even in perfect growing conditions.

And using this model alongside
growth rates

and known needs for nutrients
and photosynthesis,

researchers have been able to propose
height limits for specific species.

So far these limits have held up –

even the world’s tallest tree still falls
about fifteen meters below the cap.

Researchers are still investigating the
possible explanations for this limit,

and there may not be one universal
reason why trees stop growing.

But until we learn more,

the height of trees is yet another
way that gravity,

literally, shapes life on Earth.

加利福尼亚红杉高达 100 多米,

高耸于地球上
其他估计的 60,000 种树种之上。

生长在迷雾笼罩的内华达
山脉,

它们巨大的树干支撑
着世界上已知最高的树木。

但即使是这些庞然大物
似乎也有其局限性。

有记录以来,没有任何红杉
能够长到超过 130 米的高度

——许多研究人员表示

即使这些树还能存活数千年,它们也
不会超过这个上限。

那么究竟是什么阻止了这些
树永远长高呢?

这一切都归结为树液。

为了让树木生长,

它们需要将通过光合作用获得的糖

和通过根系带入的养分
带到生长的地方。

就像血液
在人体中循环一样,

树木的设计目的是让
两种汁液在全身循环——

携带
树木细胞生存所需的所有物质。

首先是韧皮部的汁液。 韧皮部汁液

含有
光合作用过程中叶子中产生的糖分,它

很厚,像蜂蜜一样

,沿着植物的韧皮部组织流下,将
糖分分布在整个树上。

在旅程结束时

,韧皮部的汁液已经稀薄
成水状物质,

汇集在树的底部。

在韧皮部旁边是树的
另一种组织类型:木质部。

这种组织富含
钙、钾和铁等营养物质和离子

,树木
通过根部吸收了这些物质。

在树的底部,一个组织中

的这些颗粒
比另一个组织中的更多,

因此韧皮部汁液中的水被
吸收到木质部

以纠正平衡。

这个过程称为渗透运动,

会产生营养丰富的木质部汁液

,然后沿着树干向上
传播,将这些营养物质传播到整个树上。

但这次旅程面临着一个巨大的
障碍:重力。

为了完成这项艰巨的任务
,木质部依赖于三种力量:

蒸腾作用、毛细作用
和根部压力。

作为光合作用的一部分,叶子打开
和关闭称为气孔的毛孔。

这些开口允许氧气和
二氧化碳进出叶子,

但它们也创造了一个
让水分蒸发的开口。

这种蒸发,称为蒸腾作用,

在木质部产生负压,
将含水的木质部汁液拉到树上。

这种拉力是由
称为毛细作用的水的基本特性辅助的。

在窄管中,

水分子之间的吸引力

以及水与其环境之间的粘附力
可以超过重力。

这种毛细运动在

比人类头发更细的木质部细丝中充分发挥作用。

在这两种力量拉动树液的地方,

树根的渗透运动会
产生根部压力,

将新鲜的木质部树液推向树干。

这些力量共同将树液发射
到令人眼花缭乱的高度,

分配养分,并长出新的
叶子进行光合作用——

远高于树根。

但尽管有这些复杂的系统,

每一厘米都是
与重力的斗争。

随着树木越来越高

,这些重要液体的供应
开始减少。

在一定高度,

树木无法承受
光合作用过程中蒸发的水分。

如果没有
支持额外生长所需的光合作用,

这棵树反而会将其资源
转向现有的树枝。

这个模型,被称为“水力
限制假说”,

是目前我们对
树木高度有限的最佳解释,

即使在完美的生长条件下也是如此。

使用该模型以及
生长速率

和已知的养分
和光合作用需求,

研究人员已经能够
为特定物种提出高度限制。

到目前为止,这些限制仍然存在——

即使是世界上最高的树,也仍然落在
上限以下约 15 米处。

研究人员仍在调查
对这一限制的可能解释,树木停止生长

可能没有一个普遍的
原因。

但在我们了解更多之前,

树木的高度
是重力

塑造地球生命的另一种方式。