What if there were 1 trillion more trees JeanFranois Bastin

Standing at almost 84 meters tall,

this is the largest known living tree
on the planet.

Nicknamed General Sherman,

this giant sequoia has sequestered
roughly 1,400 tons of atmospheric carbon

over its estimated 2,500 years on earth.

Very few trees can compete
with this carbon impact,

but today, humanity produces more
than 1,400 tons of carbon every minute.

To combat climate change,

we need to steeply reduce
fossil fuel emissions,

and draw down excess CO2
to restore our atmosphere’s balance

of greenhouse gases.

But what can trees do to help
in this fight?

And how do they sequester carbon
in the first place?

Like all plants, trees consume
atmospheric carbon

through a chemical reaction
called photosynthesis.

This process uses energy
from sunlight

to convert water and carbon dioxide
into oxygen

and energy-storing carbohydrates.

Plants then consume
these carbohydrates in a reverse process

called respiration,
converting them to energy

and releasing carbon
back into the atmosphere.

In trees, however, a large portion
of that carbon isn’t released,

and instead, is stored
as newly formed wood tissue.

During their lifetimes,
trees act as carbon vaults,

and they continue to draw down carbon
for as long as they grow.

However, when a tree dies
and decays,

some of its carbon will be released
back into the air.

A significant amount of CO2
is stored in the soil,

where it can remain
for thousands of years.

But eventually, that carbon
also seeps back into the atmosphere.

So if trees are going to help
fight a long-term problem

like climate change,

they need to survive to sequester
their carbon

for the longest period possible,
while also reproducing quickly.

Is there one type of tree
we could plant that meets these criteria?

Some fast growing, long-lived,
super sequestering species

we could scatter worldwide?

Not that we know of.

But even if such a tree existed,

it wouldn’t be a good
long-term solution.

Forests are complex networks
of living organisms,

and there’s no one species
that can thrive in every ecosystem.

The most sustainable trees to plant
are always native ones;

species that already play a role
in their local environment.

Preliminary research shows
that ecosystems

with a naturally occurring diversity
of trees have less competition

for resources and better resist
climate change.

This means we can’t just plant trees
to draw down carbon;

we need to restore depleted ecosystems.

There are numerous regions
that have been clear cut

or developed that are ripe for restoring.

In 2019, a study led
by Zurich’s Crowtherlab

analyzed satellite imagery
of the world’s existing tree cover.

By combining it with climate and soil data

and excluding areas necessary
for human use,

they determined Earth could support

nearly one billion hectares
of additional forest.

That’s roughly 1.2 trillion trees.

This staggering number surprised
the scientific community,

prompting additional research.

Scientists now cite a more conservative
but still remarkable figure.

By their revised estimates,
these restored ecosystems

could capture anywhere from 100 to 200
billion tons of carbon,

accounting for over one-sixth
of humanity’s carbon emissions.

More than half of the potential
forest canopy

for new restoration efforts
can be found in just six countries.

And the study can also provide insight
into existing restoration projects,

like The Bonn Challenge,

which aims to restore 350 million hectares
of forest by 2030.

But this is where it gets complicated.

Ecosystems are incredibly complex,

and it’s unclear whether they’re best
restored by human intervention.

It’s possible the right thing
to do for certain areas

is to simply leave them alone.

Additionally, some researchers
worry that restoring forests

on this scale may have unintended
consequences,

like producing natural bio-chemicals

at a pace that could actually
accelerate climate change.

And even if we succeed
in restoring these areas,

future generations would need
to protect them

from the natural and economic forces
that previously depleted them.

Taken together, these challenges
have damaged confidence

in restoration projects worldwide.

And the complexity
of rebuilding ecosystems

demonstrates how important
it is to protect our existing forests.

But hopefully, restoring
some of these depleted regions

will give us the data and conviction
necessary to combat climate change

on a larger scale.

If we get it right, maybe these modern
trees will have time to grow

into carbon carrying titans.

这棵树高近 84 米

,是地球上已知最大的活树

绰号谢尔曼将军,

这棵巨大的红杉在地球上估计的 2,500 年中已经隔离了
大约 1,400 吨大气中的碳

很少有树木可以
与这种碳影响相抗衡,

但今天,人类
每分钟产生超过 1,400 吨的碳。

为了应对气候变化,

我们需要大幅减少
化石燃料排放,

并减少多余的二氧化碳,
以恢复我们大气

中温室气体的平衡。

但是树木可以
在这场战斗中做些什么来帮助呢?

他们首先是如何隔离碳
的?

像所有植物一样,树木通过称为光合作用的化学反应消耗
大气中的碳

这个过程利用
阳光中的能量

将水和二氧化碳
转化为氧气

和储存能量的碳水化合物。

然后植物
在称为呼吸的反向过程中消耗这些碳水化合物


将它们转化为能量

并将碳释放
回大气中。

然而,在树木中,
大部分碳并没有释放出来

,而是
以新形成的木材组织的形式储存起来。

在它们的一生中,
树木充当碳库,只要它们生长

,它们就会继续吸收
碳。

然而,当一棵树死亡
和腐烂时,它的

一些碳会被释放
回空气中。

大量的
二氧化碳储存在土壤中

,可以保留
数千年。

但最终,这些碳
也会渗回大气中。

因此,如果树木要帮助
应对

气候变化等长期问题,

它们需要生存下来以尽可能长时间地
隔离碳


同时还要快速繁殖。

我们可以种植一种符合这些标准的树吗? 我们可以将

一些快速生长、长寿、
超级隔离的物种

散布到世界各地?

不是我们所知道的。

但即使存在这样的树

,也不是一个好的
长期解决方案。

森林是复杂
的生物网络

,没有一种
物种可以在每个生态系统中繁衍生息。

最可持续种植
的树木总是本地树木;

已经在当地环境中发挥作用的物种

初步研究
表明,

具有天然存在
的树木多样性的生态系统

对资源的竞争较少,能够更好地抵抗
气候变化。

这意味着我们不能仅仅种植树木
来减少碳排放;

我们需要恢复枯竭的生态系统。

有许多
区域已经被清除

或开发,已经成熟,可以恢复。

2019 年,苏黎世 Crowtherlab 领导的一项研究

分析
了全球现有树木覆盖的卫星图像。

通过将其与气候和土壤数据相结合,

并排除
人类使用所需的区域,

他们确定地球可以支持

近 10 亿公顷
的额外森林。

这大约是 1.2 万亿棵树。

这个惊人的数字
让科学界感到惊讶,

促使更多的研究。

科学家们现在引用了一个更保守
但仍然引人注目的数字。

根据他们的修正估计,
这些恢复的生态系统

可以捕获 100 到 2000
亿吨碳,

占人类碳排放量的六分之一以上。

仅在六个国家就可以找到一半以上用于新的恢复工作的潜在林冠。

该研究还可以提供对
现有恢复项目的深入了解,

例如波恩挑战赛,

该项目旨在到 2030 年恢复 3.5 亿
公顷森林。

但这就是复杂的地方。

生态系统非常复杂

,目前尚不清楚它们是否最好
通过人为干预来恢复。

对某些领域

来说,正确的做法可能是让它们不理会。

此外,一些研究人员
担心,

以这种规模恢复森林可能会产生意想不到的
后果,

例如

以实际上可能
加速气候变化的速度生产天然生物化学品。

即使我们成功
地恢复了这些地区,

后代也
需要保护它们

免受先前耗尽它们的自然和经济力量的影响

总而言之,这些
挑战损害了对

全球修复项目的信心。

重建生态系统的复杂性

表明
保护我们现有的森林是多么重要。

但希望恢复
其中一些枯竭地区

将为我们提供更大规模应对气候变化所需的数据和信念

如果我们做对了,也许这些现代
树木将有时间长

成携带碳的巨人。