The physics of the hardest move in ballet Arleen Sugano

In the third act of “Swan Lake,”

the Black Swan pulls off a seemingly
endless series of turns,

bobbing up and down on one pointed foot

and spinning around, and around,
and around 32 times.

It’s one of the toughest sequences
in ballet,

and for those thirty seconds or so,

she’s like a human top
in perpetual motion.

Those spectacular turns
are called fouettés,

which means “whipped” in French,

describing the dancer’s incredible
ability to whip around without stopping.

But while we’re marveling at the fouetté,
can we unravel its physics?

The dancer starts the fouetté by pushing
off with her foot to generate torque.

But the hard part
is maintaining the rotation.

As she turns,

friction between her pointe shoe
and the floor,

and somewhat between her body and the air,

reduces her momentum.

So how does she keep turning?

Between each turn, the dancer pauses
for a split second and faces the audience.

Her supporting foot flattens,

and then twists as it rises
back onto pointe,

pushing against the floor to generate
a tiny amount of new torque.

At the same time, her arms sweep open
to help her keep her balance.

The turns are most effective if her center
of gravity stays constant,

and a skilled dancer will be able to keep
her turning axis vertical.

The extended arms
and torque-generating foot

both help drive the fouetté.

But the real secret and the reason
you hardly notice the pause

is that her other leg never stops moving.

During her momentary pause,

the dancer’s elevated leg straightens
and moves from the front to the side,

before it folds back into her knee.

By staying in motion, that leg is storing
some of the momentum of the turn.

When the leg comes back in
towards the body,

that stored momentum gets transferred
back to the dancer’s body,

propelling her around as she rises
back onto pointe.

As the ballerina extends and retracts
her leg with each turn,

momentum travels back and forth
between leg and body,

keeping her in motion.

A really good ballerina can get more
than one turn out of every leg extension

in one of two ways.

First, she can extend her leg sooner.

The longer the leg is extended,
the more momentum it stores,

and the more momentum it can return
to the body when it’s pulled back in.

More angular momentum means
she can make more turns

before needing to replenish
what was lost to friction.

The other option is for the dancer

to bring her arms
or leg in closer to her body

once she returns to pointe.

Why does this work?

Like every other turn in ballet,

the fouetté is governed
by angular momentum,

which is equal to the dancer’s angular
velocity times her rotational inertia.

And except for what’s lost to friction,

that angular momentum has to stay
constant while the dancer is on pointe.

That’s called conservation
of angular momentum.

Now, rotational inertia can be thought of

as a body’s resistance
to rotational motion.

It increases when more mass is distributed
further from the axis of rotation,

and decreases when the mass is distributed
closer to the axis of rotation.

So as she brings her arms closer
to her body,

her rotational inertia shrinks.

In order to conserve angular momentum,

her angular velocity,
the speed of her turn,

has to increase,

allowing the same amount
of stored momentum

to carry her through multiple turns.

You’ve probably seen ice skaters
do the same thing,

spinning faster and faster
by drawing in their arms and legs.

In Tchaikovsky’s ballet, the Black Swan
is a sorceress,

and her 32 captivating fouettés do seem
almost supernatural.

But it’s not magic that
makes them possible.

It’s physics.

在“天鹅湖”的第三幕中,

黑天鹅完成了一系列看似
无穷无尽的转弯,

用一只尖脚上下摆动,一圈又一圈地

旋转
大约 32 圈。

这是芭蕾中最艰难的片段
之一

,在这三十秒左右的时间里,

她就像一个
永动机中的人类陀螺。

那些壮观的转身
被称为 fouettés

,在法语中意为“鞭打”,

描述了舞者令人难以置信的
不停地鞭打的能力。

但是,当我们惊叹于 fouetté 时,
我们能解开它的物理原理吗?

舞者通过
用脚推开以产生扭矩来启动 fouetté。

但困难的部分
是保持旋转。

当她转身时,

她的足尖鞋
和地板之间的摩擦,

以及她的身体和空气之间的摩擦,

会降低她的动量。

那她怎么一直转呢?

在每个转弯之间,舞者都会
停顿片刻,面向观众。

她的支撑脚变平,

然后在
回到足尖时扭转,

推向地板以
产生微量的新扭矩。

与此同时,她的双臂张开
,帮助她保持平衡。

如果她
的重心保持不变,转身最有效,

并且熟练的舞者将能够保持
她的转轴垂直。

伸展的手臂
和产生扭矩的脚

都有助于驱动 fouetté。

但真正的秘密和
你几乎没有注意到停顿的原因

是她的另一条腿永远不会停止移动。

在她短暂的停顿期间

,舞者抬起的腿伸直
并从前面移动到侧面,

然后折回她的膝盖。

通过保持运动,那条腿正在储存
一些转弯的动量。

当腿回到
身体时

,储存的动量会转移
回舞者的身体,

在她回到足尖时推动她四处走动

当芭蕾舞演员
每次转身都会伸展和缩回她的腿,

动量会
在腿和身体之间来回

移动,让她保持运动。

一个真正优秀的芭蕾舞演员可以通过以下两种方式
之一从每次腿部伸展中获得不止一圈

首先,她可以更快地伸展她的腿。

腿伸展的时间越长,
它储存

的动量就越多,
当它被拉回时,它可以返回身体的

动量就越多。更多的角动量意味着
她可以

在需要
补充因摩擦而损失的东西之前进行更多的转身。

另一种选择是让舞者在她

回到足尖后让她的手臂
或腿更靠近她的身体

为什么这行得通?

就像芭蕾舞中的其他转身一样

,fouetté
由角动量控制,角动量

等于舞者的
角速度乘以她的转动惯量。

除了因摩擦而损失的东西外,

当舞者在足尖上时,角动量必须保持不变。

这叫做
角动量守恒。

现在,转动惯量可以被认为

是物体
对转动运动的阻力。

当更多的质量分布
在离旋转轴更远的地方时,它会增加,

而当质量分布在
更靠近旋转轴的地方时,它会减小。

因此,当她将手臂
靠近身体时,

她的转动惯量就会缩小。

为了保持角动量,


的角速度,她的转弯速度,

必须增加,

允许相同数量
的存储

动量携带她通过多个转弯。

您可能已经看到滑冰运动员
做同样的事情,

通过拉动他们的手臂和腿来旋转得越来越快。

在柴可夫斯基的芭蕾舞剧中,黑天鹅
是一位女巫

,她的 32 首迷人的小步舞确实看起来
几乎是超自然的。

但让它们成为可能的并不是魔法

是物理学。