Have we reached the end of physics Harry Cliff

A hundred years ago this month,
a 36-year-old Albert Einstein

stood up in front of the Prussian
Academy of Sciences in Berlin

to present a radical new theory
of space, time and gravity:

the general theory of relativity.

General relativity is unquestionably
Einstein’s masterpiece,

a theory which reveals the workings
of the universe at the grandest scales,

capturing in one beautiful line of algebra

everything from why apples fall from trees
to the beginning of time and space.

1915 must have been an exciting year
to be a physicist.

Two new ideas were turning
the subject on its head.

One was Einstein’s theory of relativity,

the other was arguably
even more revolutionary:

quantum mechanics,

a mind-meltingly strange
yet stunningly successful new way

of understanding the microworld,
the world of atoms and particles.

Over the last century,
these two ideas have utterly transformed

our understanding of the universe.

It’s thanks to relativity
and quantum mechanics

that we’ve learned
what the universe is made from,

how it began
and how it continues to evolve.

A hundred years on, we now find ourselves
at another turning point in physics,

but what’s at stake now
is rather different.

The next few years may tell us
whether we’ll be able

to continue to increase
our understanding of nature,

or whether maybe for the first time
in the history of science,

we could be facing questions
that we cannot answer,

not because we don’t have
the brains or technology,

but because the laws of physics
themselves forbid it.

This is the essential problem:
the universe is far, far too interesting.

Relativity and quantum mechanics
appear to suggest

that the universe
should be a boring place.

It should be dark, lethal and lifeless.

But when we look around us, we see we live
in a universe full of interesting stuff,

full of stars, planets, trees, squirrels.

The question is, ultimately,

why does all this interesting stuff exist?

Why is there something
rather than nothing?

This contradiction is the most pressing
problem in fundamental physics,

and in the next few years, we may find out
whether we’ll ever be able to solve it.

At the heart of this problem
are two numbers,

two extremely dangerous numbers.

These are properties of the universe
that we can measure,

and they’re extremely dangerous

because if they were different,
even by a tiny bit,

then the universe as we know it
would not exist.

The first of these numbers is associated
with the discovery that was made

a few kilometers from this hall,
at CERN, home of this machine,

the largest scientific device
ever built by the human race,

the Large Hadron Collider.

The LHC whizzes subatomic particles
around a 27-kilometer ring,

getting them closer and closer
to the speed of light

before smashing them into each other
inside gigantic particle detectors.

On July 4, 2012, physicists
at CERN announced to the world

that they’d spotted
a new fundamental particle

being created at the violent collisions
at the LHC: the Higgs boson.

Now, if you followed the news at the time,

you’ll have seen a lot of physicists
getting very excited indeed,

and you’d be forgiven for thinking

we get that way every time
we discover a new particle.

Well, that is kind of true,

but the Higgs boson
is particularly special.

We all got so excited
because finding the Higgs

proves the existence
of a cosmic energy field.

Now, you may have trouble
imagining an energy field,

but we’ve all experienced one.

If you’ve ever held a magnet
close to a piece of metal

and felt a force pulling across that gap,

then you’ve felt the effect of a field.

And the Higgs field
is a little bit like a magnetic field,

except it has a constant value everywhere.

It’s all around us right now.

We can’t see it or touch it,

but if it wasn’t there,

we would not exist.

The Higgs field gives mass

to the fundamental particles
that we’re made from.

If it wasn’t there, those particles
would have no mass,

and no atoms could form
and there would be no us.

But there is something deeply mysterious
about the Higgs field.

Relativity and quantum mechanics tell us
that it has two natural settings,

a bit like a light switch.

It should either be off,

so that it has a zero value
everywhere in space,

or it should be on so it has
an absolutely enormous value.

In both of these scenarios,
atoms could not exist,

and therefore all the other
interesting stuff

that we see around us
in the universe would not exist.

In reality, the Higgs field
is just slightly on,

not zero but 10,000 trillion times weaker
than its fully on value,

a bit like a light switch that’s got stuck
just before the off position.

And this value is crucial.

If it were a tiny bit different,

then there would be
no physical structure in the universe.

So this is the first
of our dangerous numbers,

the strength of the Higgs field.

Theorists have spent decades
trying to understand

why it has this very peculiarly
fine-tuned number,

and they’ve come up
with a number of possible explanations.

They have sexy-sounding names
like “supersymmetry”

or “large extra dimensions.”

I’m not going to go
into the details of these ideas now,

but the key point is this:

if any of them explained this weirdly
fine-tuned value of the Higgs field,

then we should see new particles
being created at the LHC

along with the Higgs boson.

So far, though, we’ve not seen
any sign of them.

But there’s actually an even worse example

of this kind of fine-tuning
of a dangerous number,

and this time it comes
from the other end of the scale,

from studying the universe
at vast distances.

One of the most important consequences
of Einstein’s general theory of relativity

was the discovery that the universe began
as a rapid expansion of space and time

13.8 billion years ago, the Big Bang.

Now, according to early versions
of the Big Bang theory,

the universe has been expanding ever since

with gravity gradually putting
the brakes on that expansion.

But in 1998, astronomers made
the stunning discovery

that the expansion of the universe
is actually speeding up.

The universe is getting
bigger and bigger faster and faster

driven by a mysterious repulsive force
called dark energy.

Now, whenever you hear
the word “dark” in physics,

you should get very suspicious

because it probably means
we don’t know what we’re talking about.

(Laughter)

We don’t know what dark energy is,

but the best idea is that it’s the energy
of empty space itself,

the energy of the vacuum.

Now, if you use good old
quantum mechanics to work out

how strong dark energy should be,

you get an absolutely astonishing result.

You find that dark energy

should be 10 to the power
of 120 times stronger

than the value we observe from astronomy.

That’s one with 120 zeroes after it.

This is a number so mind-bogglingly huge

that it’s impossible
to get your head around.

We often use the word “astronomical”
when we’re talking about big numbers.

Well, even that one won’t do here.

This number is bigger
than any number in astronomy.

It’s a thousand trillion
trillion trillion times bigger

than the number of atoms
in the entire universe.

So that’s a pretty bad prediction.

In fact, it’s been called
the worst prediction in physics,

and this is more than just
a theoretical curiosity.

If dark energy were
anywhere near this strong,

then the universe
would have been torn apart,

stars and galaxies could not form,
and we would not be here.

So this is the second
of those dangerous numbers,

the strength of dark energy,

and explaining it requires an even more
fantastic level of fine-tuning

than we saw for the Higgs field.

But unlike the Higgs field,
this number has no known explanation.

The hope was that a complete combination

of Einstein’s general
theory of relativity,

which is the theory
of the universe at grand scales,

with quantum mechanics, the theory
of the universe at small scales,

might provide a solution.

Einstein himself
spent most of his later years

on a futile search
for a unified theory of physics,

and physicists have kept at it ever since.

One of the most promising candidates
for a unified theory is string theory,

and the essential idea is,

if you could zoom in on the fundamental
particles that make up our world,

you’d see actually
that they’re not particles at all,

but tiny vibrating strings of energy,

with each frequency of vibration
corresponding to a different particle,

a bit like musical notes
on a guitar string.

So it’s a rather elegant, almost poetic
way of looking at the world,

but it has one catastrophic problem.

It turns out that string theory
isn’t one theory at all,

but a whole collection of theories.

It’s been estimated, in fact,

that there are 10 to the 500
different versions of string theory.

Each one would describe
a different universe

with different laws of physics.

Now, critics say this makes
string theory unscientific.

You can’t disprove the theory.

But others actually
turned this on its head

and said, well,
maybe this apparent failure

is string theory’s greatest triumph.

What if all of these 10 to the 500
different possible universes

actually exist out there somewhere

in some grand multiverse?

Suddenly we can understand

the weirdly fine-tuned values
of these two dangerous numbers.

In most of the multiverse,

dark energy is so strong
that the universe gets torn apart,

or the Higgs field is so weak
that no atoms can form.

We live in one of the places
in the multiverse

where the two numbers are just right.

We live in a Goldilocks universe.

Now, this idea is extremely controversial,
and it’s easy to see why.

If we follow this line of thinking,

then we will never be able
to answer the question,

“Why is there something
rather than nothing?”

In most of the multiverse,
there is nothing,

and we live in one of the few places

where the laws of physics
allow there to be something.

Even worse, we can’t test
the idea of the multiverse.

We can’t access these other universes,

so there’s no way of knowing
whether they’re there or not.

So we’re in an extremely
frustrating position.

That doesn’t mean
the multiverse doesn’t exist.

There are other planets,
other stars, other galaxies,

so why not other universes?

The problem is, it’s unlikely
we’ll ever know for sure.

Now, the idea of the multiverse
has been around for a while,

but in the last few years,
we’ve started to get the first solid hints

that this line of reasoning
may get born out.

Despite high hopes
for the first run of the LHC,

what we were looking for there –

we were looking
for new theories of physics:

supersymmetry or large extra dimensions

that could explain this weirdly
fine-tuned value of the Higgs field.

But despite high hopes, the LHC
revealed a barren subatomic wilderness

populated only by a lonely Higgs boson.

My experiment published paper after paper

where we glumly had to conclude
that we saw no signs of new physics.

The stakes now could not be higher.

This summer, the LHC began
its second phase of operation

with an energy almost double
what we achieved in the first run.

What particle physicists
are all desperately hoping for

are signs of new particles,
micro black holes,

or maybe something totally unexpected

emerging from the violent collisions
at the Large Hadron Collider.

If so, then we can continue
this long journey

that began 100 years ago
with Albert Einstein

towards an ever deeper understanding
of the laws of nature.

But if, in two or three years' time,

when the LHC switches off again
for a second long shutdown,

we’ve found nothing but the Higgs boson,

then we may be entering
a new era in physics:

an era where there are weird features
of the universe that we cannot explain;

an era where we have hints
that we live in a multiverse

that lies frustratingly
forever beyond our reach;

an era where we will never be able
to answer the question,

“Why is there something
rather than nothing?”

Thank you.

(Applause)

Bruno Giussani: Harry,
even if you just said

the science may not have some answers,

I would like to ask you a couple
of questions, and the first is:

building something like the LHC
is a generational project.

I just mentioned, introducing you,
that we live in a short-term world.

How do you think so long term,

projecting yourself out a generation
when building something like this?

Harry Cliff: I was very lucky

that I joined the experiment
I work on at the LHC in 2008,

just as we were switching on,

and there are people in my research group
who have been working on it

for three decades,
their entire careers on one machine.

So I think the first conversations
about the LHC were in 1976,

and you start planning the machine
without the technology

that you know you’re going to need
to be able to build it.

So the computing power
did not exist in the early ’90s

when design work began in earnest.

One of the big detectors
which record these collisions,

they didn’t think there was technology

that could withstand the radiation
that would be created in the LHC,

so there was basically a lump of lead
in the middle of this object

with some detectors around the outside,

but subsequently
we have developed technology.

So you have to rely on people’s ingenuity,
that they will solve the problems,

but it may be a decade
or more down the line.

BG: China just announced
two or three weeks ago

that they intend to build

a supercollider twice the size of the LHC.

I was wondering how you
and your colleagues welcome the news.

HC: Size isn’t everything, Bruno.
BG: I’m sure. I’m sure.

(Laughter)

It sounds funny for a particle
physicist to say that.

But I mean, seriously, it’s great news.

So building a machine like the LHC

requires countries from all over the world
to pool their resources.

No one nation can afford
to build a machine this large,

apart from maybe China,

because they can mobilize
huge amounts of resources,

manpower and money
to build machines like this.

So it’s only a good thing.

What they’re really planning to do
is to build a machine

that will study the Higgs boson in detail
and could give us some clues

as to whether these new ideas,
like supersymmetry, are really out there,

so it’s great news for physics, I think.

BG: Harry, thank you.
HC: Thank you very much.

(Applause)

一百年前的这个月
,36 岁的阿尔伯特·爱因斯坦

站在柏林普鲁士科学院门前,

提出了一个
关于空间、时间和引力的全新理论

:广义相对论。

广义相对论无疑是
爱因斯坦的杰作,

这一理论
以最宏大的尺度揭示了宇宙的运作,

用一条美丽的代数线捕捉了

从苹果从树上掉下
来到时空开始的一切。 作为物理学家,

1915 年一定是激动人心的一年

两个新的想法正在颠覆
这个话题。

一个是爱因斯坦的相对论

,另一个可以说
是更具革命性的:

量子力学,

一种理解微观世界、原子和粒子世界的奇妙
而惊人的成功的新方法

在上个世纪,
这两个想法彻底改变

了我们对宇宙的理解。

多亏了相对论
和量子力学

,我们才
了解到宇宙是由什么构成的,

它是如何开始的
以及它是如何继续演化的。

一百年后,我们现在发现自己
处于物理学的另一个转折点,

但现在面临的风险
却大不相同。

未来几年可能会告诉
我们我们是否能够

继续增加
对自然的理解,

或者
在科学史上是否第一次,

我们可能会面临
我们无法回答的问题,

而不是因为我们没有回答。
没有大脑或技术,

但因为物理定律
本身禁止它。

这是根本问题
:宇宙太有趣了。

相对论和量子力学
似乎

表明宇宙
应该是一个无聊的地方。

它应该是黑暗的、致命的、毫无生气的。

但是当我们环顾四周时,我们会看到我们生活
在一个充满有趣事物的宇宙中,

充满了星星、行星、树木和松鼠。

最终的问题是,

为什么所有这些有趣的东西都会存在?

为什么有东西
而不是没有?

这个矛盾是
基础物理学中最紧迫的问题

,在接下来的几年里,我们可能会发现
我们是否能够解决它。

这个问题的核心
是两个数字,

两个极其危险的数字。

这些是我们可以测量的宇宙特性

,它们非常危险,

因为如果它们不同,
即使有一点点不同,

那么我们所知道的宇宙
就不会存在。

这些数字中的第一个
与在

距大厅几公里
处的欧洲核子研究中心(CERN)的发现有关,这台机器是人类有史以来建造

的最大的科学设备

大型强子对撞机。

大型强子对撞机
在 27 公里的环周围呼啸而过亚原子粒子,

使它们越来越
接近光速,

然后
在巨大的粒子探测器内将它们相互撞击。

2012 年 7 月 4 日,
欧洲核子研究中心的物理学家向全世界

宣布,他们

在大型强子对撞机的剧烈碰撞中发现了一种新的基本粒子:希格斯玻色子。

现在,如果你当时关注新闻,

你会看到很多物理学家
确实非常兴奋

,你

会认为我们每次
发现新粒子时都会这样,这是可以原谅的。

嗯,这是真的,

但希格斯玻
色子特别特别。

我们都很兴奋,
因为发现希格斯粒子

证明
了宇宙能量场的存在。

现在,你可能很难
想象一个能量场,

但我们都经历过。

如果您曾经将一块磁铁
靠近一块金属

并感觉到有一股力拉过该间隙,

那么您就感受到了磁场的影响。

希格斯
场有点像磁场,

只是它在任何地方都有一个恒定值。

现在它就在我们身边。

我们看不到它,也摸不到它,

但如果它不存在,

我们就不会存在。

希格斯场为

构成我们的基本粒子提供了质量。

如果它不在那里,那些粒子
就没有质量,

就没有原子可以形成
,也就没有我们了。

但希格斯场有一些非常神秘的东西

相对论和量子力学告诉我们
,它有两种自然设置,

有点像电灯开关。

它应该关闭,

以便它
在空间中的任何地方都具有零值,

或者它应该打开,因此它
具有绝对巨大的价值。

在这两种情况下,
原子都不存在

,因此我们在宇宙中看到的所有其他
有趣的东西

都不存在。

实际上,希格斯场
只是略微开启,

不是零,而是
比完全开启值弱 10,000 万亿倍,

有点像在关闭位置之前卡住的电灯开关

而这个价值是至关重要的。

如果它有一点点不同,

那么
宇宙中就没有物理结构。

所以这是我们危险的第一个
数字,

希格斯场的强度。

理论家花了几十年的时间
试图理解

为什么它有这个非常特殊
的微调数字

,他们提出
了许多可能的解释。

它们有一些听起来很性感的名字,
比如“超对称”

或“大额外维度”。

我现在不
打算详细介绍这些想法,

但关键是:

如果他们中的任何一个解释
了希格斯场的这个奇怪的微调值,

那么我们应该会
看到 LHC 产生新

的粒子 与希格斯玻色子。

不过,到目前为止,我们还没有看到
他们的任何迹象。

但实际上还有一个更糟糕的例子

,这种对
危险数字进行微调的例子

,这一次它
来自规模的另一端,

来自对宇宙
的遥远研究。 爱因斯坦广义相对论

最重要的结果
之一

是发现宇宙
始于 138 亿年前的时空快速膨胀

,即大爆炸。

现在,根据
大爆炸理论的早期版本

,宇宙从那时起就一直在膨胀

,引力逐渐
阻止了这种膨胀。

但在 1998 年,
天文学家惊人地发现

,宇宙的膨胀
实际上正在加速。

在一种叫做暗能量的神秘排斥力的推动下,宇宙变得
越来越大,速度越来越快

现在,每当你
在物理学中听到“黑暗”这个词时,

你应该非常怀疑,

因为这可能意味着
我们不知道我们在说什么。

(笑声)

我们不知道暗能量是什么,

但最好的想法是它

是真空本身的能量,真空的能量。

现在,如果你使用良好的旧
量子力学来计算

暗能量应该有多强,

你会得到一个绝对惊人的结果。

你会发现暗能量

应该

比我们从天文学观察到的值强 10 到 120 倍。

那是一个后面有 120 个零的。

这是一个令人难以置信的巨大数字,

以至于您无法理解
。 当我们谈论大数字时,

我们经常使用“天文”这个词

好吧,即使是那个也不会在这里做。

这个数字
比天文学中的任何数字都大。

它是整个宇宙中原子数量的一千万亿
万亿倍

所以这是一个非常糟糕的预测。

事实上,它被称为
物理学中最糟糕的预测,

而这
不仅仅是理论上的好奇。

如果暗能量
接近这种强度,

那么宇宙
就会被撕裂,

恒星和星系无法形成
,我们也不会在这里。

所以这是第二
个危险数字,

暗能量的强度

,解释它需要

比我们在希格斯场看到的更奇妙的微调水平。

但与希格斯场不同,
这个数字没有已知的解释。

希望

是爱因斯坦的
广义相对论(


大尺度宇宙理论)

与量子力学
(小尺度宇宙理论)的完全结合,

可能会提供解决方案。

爱因斯坦
自己晚年的大部分时间都

在徒劳地
寻找统一的物理学理论,

而物理学家从那时起就一直坚持下去。 统一理论

最有希望的候选
者之一是弦理论

,其基本思想是,

如果你能放大
构成我们世界的基本粒子,

你实际上会
发现它们根本不是粒子,

而是 微小的振动能量弦

,每个振动频率
对应一个不同的粒子,

有点像
吉他弦上的音符。

所以这是一种相当优雅的,几乎是
诗意的看待世界的方式,

但它有一个灾难性的问题。

事实证明,弦理论
根本不是一个理论,

而是一整套理论。

事实上,据估计,弦理论

有 10 到 500
种不同版本。

每个人都会

用不同的物理定律描述一个不同的宇宙。

现在,批评者说这使得
弦理论不科学。

你无法反驳这个理论。

但实际上其他人却

转而说,好吧,
也许这个明显的失败

是弦理论的最大胜利。

如果所有这 10 到 500 个
不同的可能宇宙

实际上都存在

于某个宏大的多元宇宙的某个地方呢?

突然间,我们可以理解

这两个危险数字的奇怪微调值。

在大多数多元宇宙中,

暗能量如此强大
以至于宇宙被撕裂,

或者希格斯场如此微弱
以至于无法形成原子。

我们生活
在多元宇宙

中两个数字正好合适的地方之一。

我们生活在一个金发姑娘的宇宙中。

现在,这个想法非常有争议
,很容易看出原因。

如果我们遵循这种思路,

那么我们将永远
无法回答这个问题:

“为什么有东西
而不是无物?”

在大多数多元宇宙中,
什么都没有

,我们生活在少数几个

物理定律
允许存在的地方之一。

更糟糕的是,我们无法检验
多元宇宙的想法。

我们无法访问这些其他宇宙,

因此无法知道
它们是否存在。

所以我们处于一个非常
令人沮丧的境地。

这并不
意味着多元宇宙不存在。

还有其他行星、
其他恒星、其他星系,

那么为什么没有其他宇宙呢?

问题是,我们不太可能
确切知道。

现在,多元宇宙的想法
已经存在了一段时间,

但在过去的几年里,
我们已经开始得到第一个可靠的暗示

,这种推理路线
可能会诞生。

尽管
对大型强子对撞机的首次运行寄予厚望,

我们一直在
寻找新的物理学理论:

超对称性或更大的额外维度

,可以解释
希格斯场这种奇怪的微调值。

但尽管寄予厚望,大型强子对撞机还是
揭示了一片荒芜的亚原子荒野,

只有一个孤独的希格斯玻色子居住。

我的实验发表了一篇又一篇的论文

,我们不得不闷闷不乐地得出
结论,我们没有看到任何新物理学的迹象。

现在的赌注再高不过了。

今年夏天,大型强子对撞机开始
了第二阶段的运行

,其能量几乎
是我们第一次运行时的两倍。

粒子物理学家
都迫切希望看到

新粒子、
微型黑洞的迹象,

或者可能是

大型强子对撞机剧烈碰撞中出现的完全出乎意料的东西。

如果是这样,那么我们就可以继续

100 年前
与阿尔伯特·爱因斯坦一起开始的漫长旅程,

以更深入地
了解自然法则。

但是,如果在两三年后,

当大型强子对撞机再次关闭并
进行第二次长时间关闭时,

我们除了希格斯玻色子之外什么也没有发现,

那么我们可能正在
进入物理学的一个新时代:

一个充满怪异的时代
我们无法解释的宇宙特征;

一个我们
暗示我们生活在一个多元宇宙中的时代,这个多元宇宙

令人沮丧地
永远无法企及;

一个我们永远无法回答这个问题的时代,

“为什么有东西
而不是没有东西?”

谢谢你。

(掌声)

Bruno Giussani:哈利,
即使你只是

说科学可能没有一些答案,

我想问你
几个问题,第一个是:

建造大型强子对撞机
是一个世代相传的项目。

我刚刚在向您介绍时提到
,我们生活在一个短期的世界中。

您如何长期思考,

在构建这样的东西时将自己投射到一代人身上?

Harry Cliff:我很幸运

,我
在 2008 年加入了我

在 LHC 进行的实验,就在我们开始工作的时候

,我的研究小组
中有一些人已经

为此工作了 30 年,
他们的整个职业生涯都在 一台机器。

所以我认为
关于大型强子对撞机的第一次谈话是在 1976 年

,你开始规划这台机器时
没有

你知道
制造它所需的技术。

因此,
在 90 年代初期,

当设计工作开始认真时,计算能力并不存在。

记录这些碰撞的大型探测器之一

他们认为没有

能够承受
LHC 中产生的辐射的技术,

所以
这个物体中间基本上有一块铅,

周围有一些探测器 外部,

但随后
我们开发了技术。

所以你必须依靠人们的聪明才智
,他们会解决问题,

但这可能需要十年
或更长时间。

BG:中国
两三周前刚刚

宣布,他们打算建造

一个两倍于大型强子对撞机的超级对撞机。

我想知道你
和你的同事如何欢迎这个消息。

HC:大小不是一切,布鲁诺。
BG:我确定。 我确定。

(笑声

) 一个粒子
物理学家这么说听起来很有趣。

但我的意思是,说真的,这是个好消息。

因此,制造大型强子对撞机这样的机器

需要世界各地的
国家集中资源。 除了中国,

没有一个国家能负担
得起制造这么大的机器

因为他们可以调动
大量资源、

人力和金钱
来制造这样的机器。

所以这只是一件好事。

他们真正计划做的
是建造一台机器

,它将详细研究希格斯玻色子,
并可以为我们提供一些线索

,说明这些新想法,
如超对称,是否真的存在,

所以这对物理学来说是个好消息,我 思考。

BG:哈利,谢谢。
HC:非常感谢。

(掌声)