Jedidah Isler How I fell in love with quasars blazars and our incredible universe

My first love was for the night sky.

Love is complicated.

You’re looking at a fly-through of the
Hubble Space Telescope Ultra-Deep Field,

one of the most distant images
of our universe ever observed.

Everything you see here is a galaxy,

comprised of billions of stars each.

And the farthest galaxy is
a trillion, trillion kilometers away.

As an astrophysicist, I have
the awesome privilege of studying

some of the most exotic objects
in our universe.

The objects that have captivated me
from first crush throughout my career

are supermassive,
hyperactive black holes.

Weighing one to 10 billion times
the mass of our own sun,

these galactic black holes
are devouring material,

at a rate of upwards of
1,000 times more

than your “average”
supermassive black hole.

(Laughter)

These two characteristics,

with a few others, make them quasars.

At the same time, the objects I study

are producing some of the most
powerful particle streams

ever observed.

These narrow streams, called jets,

are moving at 99.99 percent
of the speed of light,

and are pointed directly at the Earth.

These jetted, Earth-pointed, hyperactive
and supermassive black holes

are called blazars, or blazing quasars.

What makes blazars so special
is that they’re some of the universe’s

most efficient particle accelerators,

transporting incredible amounts
of energy throughout a galaxy.

Here, I’m showing an
artist’s conception of a blazar.

The dinner plate by which
material falls onto the black hole

is called the accretion disc,

shown here in blue.

Some of that material is slingshotted
around the black hole

and accelerated to insanely high speeds

in the jet, shown here in white.

Although the blazar system is rare,

the process by which nature
pulls in material via a disk,

and then flings some of it out via a jet,
is more common.

We’ll eventually zoom out of
the blazar system

to show its approximate relationship
to the larger galactic context.

Beyond the cosmic accounting
of what goes in to what goes out,

one of the hot topics in
blazar astrophysics right now

is where the highest-energy
jet emission comes from.

In this image, I’m interested
in where this white blob forms

and if, as a result, there’s any
relationship between the jet

and the accretion disc material.

Clear answers to this question

were almost completely
inaccessible until 2008,

when NASA launched a new telescope
that better detects gamma ray light –

that is, light with energies
a million times higher

than your standard x-ray scan.

I simultaneously compare variations
between the gamma ray light data

and the visible light data from
day to day and year to year,

to better localize these gamma ray blobs.

My research shows that in some instances,

these blobs form much closer
to the black hole

than we initially thought.

As we more confidently localize

where these gamma ray
blobs are forming,

we can better understand how jets
are being accelerated,

and ultimately reveal
the dynamic processes

by which some of the most fascinating
objects in our universe are formed.

This all started as a love story.

And it still is.

This love transformed me from
a curious, stargazing young girl

to a professional astrophysicist,

hot on the heels of celestial discovery.

Who knew that chasing after the universe

would ground me so deeply
to my mission here on Earth.

Then again, when do we ever know
where love’s first flutter

will truly take us.

Thank you.

(Applause)

我的初恋是夜空。

爱情很复杂。

您正在观看
哈勃太空望远镜超深场的飞越,


是我们观测到的宇宙中最遥远的图像之一。

你在这里看到的一切都是一个星系,

每个都由数十亿颗恒星组成。

而最远的星系
在万亿、万亿公里之外。

作为一名天体物理学家,
我有幸研究我们宇宙中

一些最奇特的物体

在我的整个职业生涯中,第一次迷恋我的物体

是超大质量、
过度活跃的黑洞。 这些

星系黑洞
的质量是我们太阳质量的 1 到 100 亿倍,

它们吞噬物质

的速度是

“平均”
超大质量黑洞的 1000 倍以上。

(笑声)

这两个特征,

加上其他一些特征,使它们成为类星体。

同时,我研究的物体

正在产生一些有史以来观察到的最
强大的粒子流

这些被称为喷流的窄流

以 99.99%
的光速移动,

并直接指向地球。

这些喷射的、指向地球的、超活跃的
和超大质量的黑洞

被称为耀变体或炽热的类星体。

耀变体之所以如此特别,
是因为它们是宇宙中

最高效的粒子加速器之一,可以

在整个星系中传输难以置信的能量。

在这里,我展示了一个
艺术家对耀变体的概念。

物质落入黑洞

的餐盘称为吸积盘

,此处以蓝色显示。

其中一些物质被弹射
在黑洞周围,

并在喷流中加速到疯狂的高速

,这里以白色显示。

尽管耀变体系统很少见,

但自然界
通过圆盘吸入物质,

然后通过喷射器将其中一些物质抛出的
过程更为常见。

我们最终将
缩小耀变体系统,

以显示其
与更大银河环境的大致关系。

除了对什么进出什么的宇宙解释之外,

目前耀变体天体物理学的热门话题之一

是最高能量的
喷射流的来源。

在这张图片中,我
对这个白色斑点的形成位置

以及因此
喷流

和吸积盘材料之间是否存在任何关系感兴趣。

直到 2008 年

,美国宇航局发射了一个新的望远镜
来更好地探测伽马射线光——

也就是说,能量

比标准 X 射线扫描高一百万倍的光,这个问题的明确答案几乎完全无法获得。

我同时比较了每天和每年
的伽马射线光数据

和可见光数据之间的变化

以更好地定位这些伽马射线斑点。

我的研究表明,在某些情况下,

这些斑点形成的距离

比我们最初想象的要近得多。

随着我们更加自信地

定位这些伽马射线团
的形成位置,

我们可以更好地了解喷流
是如何加速的,

并最终揭示我们宇宙

中一些最迷人的
物体形成的动态过程。

这一切都始于一个爱情故事。

它仍然是。

这份爱把我从
一个好奇的、观星的年轻女孩

变成了一个专业的天体物理学家,

紧跟天体的发现。

谁知道追逐宇宙

会让我深深地扎根
于我在地球上的使命。

话又说回来,我们什么时候才能
知道爱情的第一波

真正会把我们带到哪里。

谢谢你。

(掌声)