Katie Mack Lifealtering questions about the end of the universe TED

Lily James Olds: Hi, Katie, welcome.

Katie Mack: Thank you.
Thanks for having me.

LJO: So happy to have you.

I would love if, for those of us
who are not astrophysicists,

you could return and help us
give a little refresher

on how the universe did begin
and how we know that.

KM: Right, right, yeah.

So we know actually quite a lot
about the early universe,

about the beginning of the universe,

because we can actually see it.

And this is the wildest part of astronomy,

that we can see
the beginning of the universe.

So the universe is
about 13.8 billion years old,

and when we look out into the cosmos,
we see distant galaxies.

And when we look at the distant ones,
they’re all moving away from us.

And so for a long time,
there’s been this idea that, well,

if the galaxies are moving
away from us now,

they must have been closer
in the past.

The universe in the past
must have been smaller in some sense,

hotter and denser,

everything packed into less space.

And that’s the Big Bang theory,

the idea that the universe was smaller
and denser and hotter in the past.

And we got really direct
evidence of that in the 1960s

when we’re able to actually see the light

from the very early universe.

So let me take one more step back.

When we look at a distant galaxy,

the light from that galaxy
takes some time to reach us.

So we see, you know,
we see a galaxy shining.

That light might have taken
a billion years to cross the space

between there and here.

We can see galaxies that are so distant

that the light took 10 billion years,
even 13 billion years to reach us,

and the universe is only
13.8 billion years old.

So what happens if you look
at something so far away

that the light has taken
more than, you know,

more than 13 billion years to reach us?

What happens when you try
and look at something even farther?

Well, there’s a limit
to how far you can look,

the observable universe,

and that limit is defined
by how long it takes light to travel.

So if something is so far away

that the light would take
15 billion years to reach us,

we can’t see it because the light
hasn’t gotten here yet.

But if we look at something
that’s, you know, so far away,

the light’s taken 13.8
billion years to reach us,

then what we’re looking at is a time
when the universe was just beginning.

We’re looking at the light
from the very beginning of the universe

and what we should see,
if we look at something that far away,

is fire, right?

So we take this idea

that the early universe was hot and dense,

everywhere in the cosmos was, like,
filled with this sort of roiling plasma.

And so if we look far enough away,
we should see it,

because we’re looking so far back in time

that we’re looking at the time
when the whole universe was on fire.

And we do see that shockingly,

we actually do see that.

When we use microwave telescopes,

we see this background light
every direction we look.

You know, at the edges
of our vision, is this heat, this fire,

and we know that it’s heat,

we can analyze the spectrum of the light

and we can see that this microwave light,

this radiation,

is the kind of light you get
when something is just glowing

because it’s hot.

And so we can see
that every direction we look,

if we look far enough away,
we’re looking so far back in time

that we’re seeing a universe
that is still on fire.

So that’s the Big Bang.

Exactly what happened,
you know, around that time,

how that fire got started,

that’s a whole other very complicated
story that we’re still figuring out.

So we think that, you know,

before the fiery part there was
this inflation, this rapid expansion.

Before that, maybe
there was a singularity,

maybe not, we don’t know.

We don’t know what started
that rapid expansion.

But we do know that for the first
380,000 years of the cosmos,

it was this sort of,

all of space was filled with this fire.

And we know that because we can see it.

LJO: It’s amazing.

Well, let’s get into some
of the juicy specifics

of how exactly the universe might end.

I know that you’ve talked to many
other cosmologists yourself

and there are a lot
of different theories on this.

Where do you think we should begin?

Dealer’s choice.

What’s in store for us?

KM: Well, so the one that is,
as far as we know, the most likely,

the one that we talk about the most
in cosmology, is the heat death.

So this is what I discussed
in my TED Talk,

and the idea there is that, you know,
the universe is currently expanding.

Galaxies are getting farther
and farther apart from each other.

When we measured the expansion,

it turned out that it was not
slowing down at all,

it was actually speeding up.

And that was like if you throw
a ball up into the air,

it slows down for a little while
and then just shoots off into space.

It’s very similar physics,

and we didn’t have any idea
why that should happen.

So we still don’t know
why that’s happening.

We attribute it to something
we call “dark energy.”

We don’t know what dark energy is.

It’s just something that seems
to be pushing things apart,

making the universe expand faster.

And because of that,
it looks like we will end up

with everything, really –

you know, all the galaxies
really isolated,

the stars will die away.

The universe will get
very dark, very cold.

And you know, we’ll end up
with this basically empty,

cold, dark, lonely universe.

And that’s called the heat death.

The reason it’s called the heat death

is because, like …

Everything’s decaying into,
like, the waste heat of creation.

So, you know, just as you can’t have
a machine that’s perfectly efficient,

it’ll always lose a little bit
of energy through friction.

That’s a property of physics in general,

it’s called the second law
of thermodynamics.

Everything sort of decays
into entropy, into disorder,

and that is called heat
from a physics perspective.

So the heat death is when nothing is left
but the waste heat of the universe.

Which is part of why it’s fun
to talk about the alternatives,

because we don’t know for sure
that the heat death will happen.

Partially because we don’t know
what dark energy is.

We don’t understand this stuff
that’s making the universe expand faster.

Maybe it’s just a property
of space where, you know,

space just has this sort of,
expansion built in,

and it’ll keep going the way it’s going.

But maybe it’s something
that changes over time.

Maybe it’ll turn around
and we’ll get a big crunch

and everything will come back together.

Or maybe it’ll become more powerful.

And then you end up with something
called a “Big Rip,”

where if the dark energy
becomes more powerful,

it starts to not just move galaxies
apart from each other,

but actually expand the space in galaxies
and move stars away from galaxies

and then pull apart planets and stars

and eventually destroy
the entire universe.

So those are other possibilities
that I talk about in the book.

Because we don’t know what dark energy is,

and we don’t know for sure
what it’ll do in the future.

LJO: I want to open up to some
of the questions from the audience.

Vasily asks,

“Have you ever asked the question
‘If there were no universe,

what would there be?’

This leads to the question
of what will be after the universe ends?”

KM: So I think that gets
into tricky questions

of how do you define universe, right?

So you can define universe
as being everything,

and then it becomes
a less clear question.

What does it mean for something
other than everything?

Then, you know, if there is anything else,

it’s by definition part of the universe.

But one of the ways we often talk
about the universe in cosmology,

is we talk about the observable universe,

where the observable universe
is the part of the cosmos we can see,

where the light has had time
to reach us since the Big Bang.

So I talked about that before.

The edge of the observable universe
is where we see that Big Bang light.

The actual universe,

we think extends far beyond
the edge of the observable universe.

The observable universe is just
a perspective thing.

It’s like a horizon when you’re on Earth,

you can only see so far
because of where you’re standing,

but the Earth keeps going
beyond the horizon.

And similarly, with the universe,
we’re pretty sure that it extends

much, much farther than what we can see,
what we can observe.

But we can see the observable
universe and we can study,

we can learn about
the observable universe,

and we can’t get any information
about what’s beyond it.

So, you know, that brings up things
like a multiverse,

where you can have regions of space
that are so far away from us

that they’re effectively another universe,

and those regions can have
a totally different history,

a totally different future,

different laws of physics even.

So, there are possibilities
for things that carry on

long after our observable universe
is decayed into entropy

or maybe meets another fate.

And there are even possibilities

where there could be higher
dimensions of space,

like directions that we can’t conceive,

you know, space that’s separated from us
by some other dimension of space,

some other direction
that we don’t, you know,

perpendicular to all of our
spatial directions,

which I can’t sort of envision.

But mathematically,
that makes sense in some ways.

So there are those kinds of possibilities.

And you know, you can get
into really weird stuff

about the nature of space and time

with you if you really dig into it.

But in the book,

I really just talk about our observable
universe in terms of the fate of that,

because that’s all we can really study.

I do talk a little bit
about the multiverse

and the possibilities
of other parts of space.

But in terms of what happens
when our universe is destroyed,

I mean, it depends on how it’s destroyed,

whether there’s, you know,
the observable universe is over

but there’s more space beyond it or not.

And that’s all the realm
of speculation at the moment.

LJO: So I want to switch
gears a little bit,

because one of the articles
that you wrote fairly recently

talked about how time and space
might not be real,

and how there might be a deeper,

more abstract mathematical
reality to the universe,

and that time and space
might just be what we perceive.

Can you tell us more about this?

How is this possible?

Talk about your mind doing backflips.

KM: Yeah, yeah, this is really wild.

So I first heard about this
a couple of years ago

where somebody was talking about how,

if you do calculations of particles
interacting with other particles,

like the kind of stuff relevant
to particle collider experiments

where you’re slamming protons
into each other

and measuring what happens
to the particles that come out,

there are ways to do those calculations

where you can kind of put them
into an abstract mathematical format

and do the calculation.

And then you get the same answer

as if you do the calculation
the usual way,

assuming, you know, it’s actually
particles moving through space

and interacting with each other
in space and time.

And since there are ways
to do some of these calculations

without making use
of the ideas of space or time,

you just have this sort of abstract
mathematical space,

it sort of suggests that maybe space
and time are not helping you

and not necessary for understanding
how these processes work.

And there is actually a lot
that you can calculate in physics

at the sort of, subatomic scale,

where space and time
are not salient variables.

They’re not part of the calculation.

And you get the right answer
when you do that.

And that sort of hints at this idea

that maybe space and time
are not the fundamental things

that govern how the universe works,

that you don’t have to assume
that, you know,

everything happens in a background
of a space measured by time.

If you talk to the theoretical physicists
who are working in these areas

and are actually doing these calculations,
doing these equations,

they will say things like,

“Oh yeah, we’ve known for years

that space and time are not fundamental.”

And you’re like, “Wait, what?”

LJO: I missed that memo.

KM: Yeah, no, totally.

And you dig down into it and they say,

“Well, you know, maybe they’re emergent.”

Maybe it’s like, you know,
they’re sort of real.

Like, we live in space,
we experience time.

But the actual, sort of,
fabric of the universe

is some other mathematical space
that just doesn’t map well

to space and time.

That’s not the same kind of thing,
doesn’t follow the same kind of rules.

But in some sense, you know,
maybe we are mathematical,

you know, some kind
of instantiation of mathematics

rather than objects in space
existing in time.

And that’s the more fundamental thing.

And it’s just that because of our
perspective, because of our experience,

we think we see objects in space and time.

In fact, that is not what
the universe is really made of.

LJO: I love that.

You know, it turns out
you are also a poet.

I don’t want to put you on the spot,
but I’m wondering,

I really love your poem “Disorientation,”

and I feel like it states
this really beautifully, actually.

I was wondering if you’d be willing
to read the last few stanzas?

KM: Sure, yeah, I can do that.

Yes, this was a poem I wrote
a few years ago,

and I wrote it
as a Twitter thread actually,

just because I thought
it would be kind of fun.

So each stanza is a tweet.

But it sort of encapsulates
how I think about the universe.

So, yeah, this is the last bit.

I want you to believe that the universe
is a vast, random, uncaring place

in which our species, our world,
has absolutely no significance

And I want you to believe

that the only response
is to make our own beauty

and meaning and to share it while we can

I want to make you wonder
what is out there.

What dreams may come in waves of radiation

across the breadth of an endless expanse.

What we may know, given time,

and what splendors
may never, ever reach us

I want to make it mean something to you.

That you are in the cosmos.

That you are of the cosmos.

That you were born from stardust

and to stardust you will return.

That you are a way for the universe
to be in awe of itself.

LJO: I love that.

Thank you so much, Katie.

Thank you for such a thoughtful
and engaging conversation.

It’s really been such a pleasure.

莉莉·詹姆斯·奥尔兹:嗨,凯蒂,欢迎您。

凯蒂·麦克:谢谢。
感谢您的款待。

LJO:很高兴有你。

对于
我们这些不是天体物理学家的人,

如果您能回来并帮助我们

重新了解宇宙是如何开始的
以及我们是如何知道的,我会很高兴的。

KM:对,对,是的。

所以我们实际上知道很多
关于早期宇宙,

关于宇宙的开始,

因为我们实际上可以看到它。

这是天文学最疯狂的部分

,我们可以看到
宇宙的开始。

所以宇宙
大约有 138 亿年的历史

,当我们向外看宇宙时,
我们会看到遥远的星系。

当我们看着远处的人时,
他们都在远离我们。

所以很长一段时间以来,
人们一直认为,

如果星系
现在离我们越来越远,

那么它们
过去一定更近了。

过去的宇宙
在某种意义上一定更小,

更热更稠密,

一切都挤在更小的空间里。

这就是大爆炸理论,

即宇宙
在过去更小、更密集、更热的想法。

在 1960 年代,

当我们能够真正看到

来自早期宇宙的光时,我们得到了非常直接的证据。

所以让我再退一步。

当我们观察一个遥远的星系时,

来自那个星系的光
需要一些时间才能到达我们身边。

所以我们看到,你知道,
我们看到一个星系在发光。

那道光可能
需要十亿年才能穿过

那里和这里之间的空间。

我们可以看到如此遥远的星系,

以至于光花了 100 亿年,
甚至 130 亿年才到达我们身边,

而宇宙只有
138 亿年的历史。

那么,如果你看到
的东西太远了

,以至于光花

了超过 130 亿年才到达我们身边,会发生什么?

当你
尝试看更远的东西时会发生什么?

嗯,
你能看多远

,可观测的宇宙,

是有限制的,这个限制是
由光传播多长时间来定义的。

因此,如果某物距离我们很远,

以至于光需要
150 亿年才能到达我们,

我们看不到它,因为光
还没有到达这里。

但是,如果我们看的东西
,你知道,这么远

,光花了 138
亿年才到达我们,

那么我们看到的是
宇宙刚刚开始的时候。

我们正在看
宇宙一开始的光


如果我们看那么远的东西,我们应该看到的

是火,对吗?

所以我们

认为早期的宇宙是热而稠密的,

宇宙中的每一处都
充满了这种翻腾的等离子体。

因此,如果我们看的足够远,
我们应该能看到它,

因为我们回溯的时间如此之远,

以至于我们
看到的是整个宇宙着火的时间。

我们确实看到了令人震惊的,

我们确实看到了。

当我们使用微波望远镜时,

我们看到的每个方向都会看到这种背景光

你知道,在
我们视野的边缘,是这种热,这种火

,我们知道它是热,

我们可以分析光的光谱

,我们可以看到这种微波光,

这种辐射,

是那种光
当某些东西

因为它很热而发光时得到。

因此,我们可以看到,我们所看的
每一个方向,

如果我们看的足够远,
我们就会回溯到如此遥远的时间

,以至于我们看到的
宇宙仍在燃烧。

所以这就是大爆炸。

究竟发生了什么,
你知道,大约在那个时候,

那场大火是如何开始的,

那是另一个非常复杂的
故事,我们仍在弄清楚。

所以我们认为,你知道,

在火热的部分之前有
这种通货膨胀,这种快速扩张。

在此之前,也许
有一个奇点,

也许没有,我们不知道。

我们不知道是什么开始了
这种快速扩张。

但我们确实知道,在宇宙最初的
380,000 年里

,就是这样,

所有的空间都充满了这种火。

我们知道这一点,因为我们可以看到它。

LJO:太神奇了。

好吧,让我们

来看看宇宙究竟会如何结束的一些有趣的细节。

我知道您自己也与许多其他宇宙学家交谈过,

对此有
很多不同的理论。

你认为我们应该从哪里开始?

经销商的选择。

为我们准备了什么?

KM:嗯
,据我们所知,最有可能的

,也是我们
在宇宙学中谈论最多的一种,就是热寂。

所以这就是
我在 TED 演讲中讨论的内容

,这个想法是,你知道
,宇宙目前正在膨胀。

星系之间的距离
越来越远。

当我们测量膨胀时

,结果证明它根本没有
减速,

实际上是在加速。

这就像如果你把
一个球扔到空中,

它会减速
片刻,然后就射向太空。

这是非常相似的物理学

,我们不
知道为什么会发生这种情况。

所以我们仍然不知道
为什么会这样。

我们将其归因于
我们称之为“暗能量”的东西。

我们不知道暗能量是什么。

它只是
似乎将事物分开,

使宇宙膨胀得更快的东西。

正因为如此,
看起来我们最终会

得到一切,真的——

你知道,所有的星系都
真的被孤立了

,星星会消失。

宇宙会变得
非常黑暗,非常寒冷。

你知道,我们最终会
得到这个基本上空荡荡、

寒冷、黑暗、孤独的宇宙。

这就是所谓的热死。

它被称为热死的原因

是因为,就像……

一切都在腐烂成,
就像,创造的废热。

所以,你知道,就像你不能拥有
一台非常高效的机器一样,

它总是会
通过摩擦损失一点能量。

这通常是物理学的一个特性,

被称为
热力学第二定律。

一切都会衰
变成熵,变成无序,从物理学的角度来看

,这就是所谓的热

因此,热寂是指
除了宇宙的余热之外什么都没有留下。

这就是为什么谈论替代方案很有趣的部分原因

因为我们不确定
是否会发生热死。

部分原因是我们不
知道暗能量是什么。

我们不明白
这些让宇宙膨胀得更快的东西。

也许它只是
空间的一种属性,你知道,

空间只是内置了这种
扩展

,它会继续按照它的方式运行。

但也许它
会随着时间而改变。

也许它会转过来
,我们会得到一个大的紧缩

,一切都会重新在一起。

或者它可能会变得更强大。

然后你会得到一个
叫做“大裂口”的东西

,如果暗能量
变得更强大,

它不仅开始让星系
彼此分离,

而且实际上扩大了星系中的空间
,让恒星远离星系

,然后 拉开行星和恒星

并最终
摧毁整个宇宙。

所以这些
是我在书中谈到的其他可能性。

因为我们不知道暗能量是什么

,也不
知道它未来会做什么。

LJO:我想
对观众提出的一些问题敞开心扉。

瓦西里问道:

“你有没有问过
‘如果没有宇宙,

会有什么宇宙?’

这就引出了一个
问题,宇宙终结后会怎样?”

KM:所以我认为这涉及

你如何定义宇宙的棘手问题,对吧?

所以你可以将宇宙
定义为一切,

然后它就变成
了一个不太清楚的问题。


一切以外的事物意味着什么?

然后,你知道,如果还有别的东西,

它就是宇宙的一部分。

但是我们
在宇宙学中经常谈论宇宙的一种方式

是,我们谈论可观测宇宙,

其中可观测宇宙
是我们可以看到的宇宙的一部分,自大爆炸以来

,光有时间
到达我们这里。

所以我之前讲过这个。

可观测宇宙的边缘
是我们看到大爆炸光的地方。

我们认为,实际的宇宙

远远超出
了可观测宇宙的边缘。

可观察的宇宙只是
一个透视的东西。

当你在地球上时,它就像一个地平线,因为你站在哪里,

你只能看到这么远

但地球却一直
在地平线之外。

同样,对于宇宙,
我们很确定它

比我们能看到的、
我们能观察到的要延伸得多、远得多。

但是我们可以看到可观测的
宇宙,我们可以研究,

我们可以
了解可观测的宇宙

,但我们无法获得
关于它之外的任何信息。

所以,你知道,这带来了
像多元宇宙这样的东西,

在那里你可以拥有远离我们的空间区域

,它们实际上是另一个宇宙

,这些区域可以
有完全不同的历史

,完全不同的未来,

甚至不同的物理定律。

因此,

在我们可观察的
宇宙衰变为熵

或可能遇到另一种命运之后,仍有可能继续存在的事情。

甚至

还有可能存在更高
维度的空间,

比如我们无法想象的方向,

你知道,空间与我们
被空间的其他维度隔开

,我们不知道的其他方向,你知道,

垂直于我们所有的
空间方向,

这是我无法想象的。

但从数学
上讲,这在某些方面是有道理的。

所以有这些可能性。

而且你知道,如果你真的深入研究它,你可以和你一起了解

关于空间和时间性质的非常奇怪的东西

但在书中,

我真的只是
从命运的角度来谈论我们可观测的宇宙,

因为这就是我们真正可以研究的全部。

我确实
谈到了多元宇宙


太空其他部分的可能性。

但就
当我们的宇宙被毁灭时会发生什么而言,

我的意思是,这取决于它是如何被毁灭

的,你知道
,可观察的宇宙是否已经结束,

但它之外是否还有更多的空间。

这就是目前所有
的猜测领域。

LJO:所以我想
稍微换个角度,

因为你最近写的一篇文章

谈到了时间和空间如何
可能不是真实的,

以及宇宙如何可能存在更深、

更抽象的数学
现实,

以及 时间和空间
可能正是我们所感知的。

你能告诉我们更多关于这方面的信息吗?

这怎么可能?

谈论你做后空翻的想法。

KM:是的,是的,这真的很疯狂。

所以我几年前第一次听说这个

,有人在谈论

如果你计算粒子
与其他粒子的相互作用,

比如
与粒子对撞机实验相关的东西

,你将质子相互撞击

并测量
出来的粒子会发生什么,

有一些方法可以进行这些计算

,您可以将它们
放入抽象的数学格式

并进行计算。

然后你会得到相同的答案

,就像你
按照通常的方式进行计算一样,

假设,你知道,它实际上是
粒子在空间中移动


在空间和时间中相互作用。

而且由于有一些方法
可以在

不使用
空间或时间的概念的情况下进行其中一些计算,所以

你只有这种抽象的
数学空间,

它有点暗示空间
和时间可能对你没有帮助

,也不是理解所必需的
这些过程是如何工作的。

实际上
,您可以在物理学

中以亚原子尺度计算很多东西,

其中空间和时间
不是显着变量。

它们不是计算的一部分。 当

你这样做时,你会得到正确的答案

这暗示了这个想法

,也许空间和时间
不是

支配宇宙如何运作的基本事物

,你不必
假设,你知道,

一切都发生在一个
由时间测量的空间背景中。

如果你与
在这些领域工作的理论物理学家交谈

,他们实际上正在做这些计算,
做这些方程式,

他们会说,

“哦,是的,我们多年来都

知道空间和时间不是基本的。”

你就像,“等等,什么?”

LJO:我错过了那份备忘录。

KM:是的,不,完全。

然后你深入研究它,他们说,

“嗯,你知道,也许他们是新兴的。”

也许就像,你知道的,
它们是真实的。

就像,我们生活在太空中,
我们体验时间。

但是宇宙的实际
结构

是其他一些数学空间
,它不能很好

地映射到空间和时间。

那不是同一类事情,
不遵循同一类规则。

但在某种意义上,你知道,
也许我们是数学的,

你知道,某种
数学的实例化,

而不是
存在于时间中的空间中的对象。

这是更根本的事情。

只是因为我们的
视角,因为我们的经验,

我们认为我们在空间和时间中看到了物体。

事实上,这
并不是宇宙的真正组成部分。

LJO:我喜欢那个。

你知道,原来
你也是一个诗人。

我不想让你当场,
但我想知道,

我真的很喜欢你的诗《迷失方向》

,我觉得它
真的很好地表达了这一点,实际上。

我想知道你是否
愿意阅读最后几节?

KM:当然,是的,我可以做到。

是的,这是我几年前写的一首诗

,实际上我把它
写成一个 Twitter 线程,

只是因为我觉得
它会很有趣。

所以每一节都是一条推文。

但它有点概括
了我对宇宙的看法。

所以,是的,这是最后一点。

我想让你相信宇宙
是一个广阔的、随机的、冷漠的

地方,我们的物种、我们的世界在其中
毫无意义

我想让你

相信唯一的反应
是创造我们自己的美丽

和意义并分享它 虽然我们可以,但

我想让你想
知道外面有什么。

什么样的梦想可能会

在无边无际的广度上以辐射波的形式出现。

我们可能知道的,给定的时间,

以及
可能永远不会到达我们的辉煌,

我想让它对你有意义。

你在宇宙中。

你属于宇宙。

你是从星尘中诞生的,

你将返回星尘。

你是
宇宙敬畏自身的一种方式。

LJO:我喜欢那个。

非常感谢你,凯蒂。

感谢您进行如此深思熟虑
和引人入胜的对话。

这真的是一种享受。