String theory and the hidden structures of the universe Clifford Johnson

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

So I work on trying to understand

how the universe works at the very basic level,

the most basic level we can find.

So, when you try in your everyday life

to try and work out how something works,

what you’re actually doing is you’re looking for

what I call hidden structures.

For example, you take something like your cell phone,

your smart phone,

it’s a complicated object,

and you might wonder how it works.

Well, what you can do is go in

and actually take it apart.

You’ll void the warranty, but that’s OK.

And you’ll go in and what you’ll find

is that it’s made of tiny little electronic components.

And those electronic components are actually moving around

a certain kind of particle that we know

that’s called the electron,

and that’s where the name “electronics” comes from.

So if you know the actual rules

of how to put those things together,

you can actually make your smart phone

or you could make various other electronic devices as well.

So, there are people like myself

who, actually for a living, try and do this sort of thing

not just for, say, a cell phone or its components,

but asking what, say, your hand is made of,

or the chair you’re sitting in,

or the planet Earth,

the sun,

the stars,

the entire universe.

And so, using various kinds of instruments

and observations

and experiments,

we’ve been able to probe deeper and deeper over the years,

and we now know that the matter that we’re made of

and that we see around us

is actually made of tiny little elementary particles.

And elementary particles interact with each other

via the forces of nature,

but we’ve also discovered

that those forces of nature themselves actually operate

by exchanging elementary particles as well.

They’re actually particles of force that are exchanged

by the particles of matter.

And you may have heard this year

that there was big news,

a major announcement in this story,

the Large Hadron Collider, the LHC,

a huge experiment in Europe,

has actually uncovered a Higgs boson,

and that particle’s job is to interact

with the various elementary particles

and give them the masses that we observe.

So, this exciting picture is analogous

to the one I showed you for the cell phone.

We have the components

and we have the rules of particle theory,

as it’s called,

by which these all operate

and give rise to the various things.

Now, we actually think that we’ve only just

scratched the surface of finding this quantum world,

the hidden structure of our world.

Let me give you three examples

of the puzzles we’re still working on.

So, what I did is I gathered the particles up

into the patterns that they tend to form,

but we don’t know where those patterns come from.

We know how to describe the particles,

but we don’t know where the patterns come from.

When you see patterns in science,

you look for a hidden structure,

so that’s one of the things.

Also, we now know that there’s a huge amount

more matter out there

than just the things that I was just talking about.

That stuff is called dark matter.

We don’t know what it is,

and we’d like to be able to get it

and experiment with it and figure out what it is.

And then, the other thing I’d like to talk about

is the fact that the force of gravity,

perhaps the most familiar force we know,

when you get down to the quantum level,

it actually doesn’t operate

according to those rules of particle theory.

So, given that gravity is actually about the shape

of space and time as Einstein taught us,

we, in working out what the quantum story of gravity is,

which we call quantum gravity,

we hope to get to groups of questions like,

are there particles of space and time itself

and how do they fit together?

What are the rules?

So, this leads us to things

like studying where it all began,

13.7 billion years ago,

the Big Bang.

We know matter and energy

as we understand it was created,

but also, space and time itself.

So those are the sorts of things

we study in this quest.

Also, we have things that are around us today,

such as black holes,

which are very important clues.

They’re actually holes in space

that we’d like to understand.

Also, the newly discovered dark energy,

which is the tendency of space

all through the universe to accelerate its expansion.

So scientists are working on these kinds of things,

trying to understand what we think is now the case

that there’s not just hidden structures

of matter and energy,

but also space and time.

So the question is, what are the rules?

And there are many approaches to this,

and one of them is one you may have heard of,

called string theory.

And so it is one of many approaches

and we don’t know if it’s right yet,

we’re not finished developing the theory,

but it’s given us some really exciting, tantalizing hints.

I’d like to tell you about a few of them.

So, one of them is simply that you take away

the idea of looking for a tiny quantum particle,

you look instead for an extended object,

a string, which can vibrate.

And it actually gives you some exciting opportunities

because, for example, it would say

if we’ve missed that hidden structure

by not looking closely enough,

we wouldn’t realize that many different kinds of particles

are just different vibrations of the same string,

which is a really exciting possibility

and a huge simplification.

So that’s one of the ideas.

The other thing that’s really exciting about string theory

is that one of those particles it describes

is actually the missing quantum of gravity

that we have been trying to understand.

And then the other thing is that strings actually,

instead of one wanting just to move in the dimensions,

the three space dimensions that we are familiar with,

actually seem to want to move in higher dimensions.

So we have this idea, then,

what would it mean for our world,

if this were anything to do with our world,

and we don’t know that yet?

Here’s a way that our world would arise from that.

You would have our world,

and then one of the hidden structures

would be hidden chunks in space time

that are not visible, those extra dimensions.

And then the various particles that we see in the world

would come from being vibrations of strings

and those patterns we saw that we can’t explain

come from the fact that the strings can probe

and feel the shape of those internal dimensions.

So, one of the things, then, is

can we actually test this?

This is a lovely idea, but how do we confront this

with real experiments and observations

because we’re doing science here?

And that’s the hard thing.

We think that the energy you need

to probe the tiny-enough scales

to see the strings if they’re there,

is more than we can hope to get any time soon.

But what we can do is we can look

for the consequences of those hidden structures,

we can look for how those things show up in physics

that we can get access to.

So, that’s why we study things like

dark matter,

black holes,

dark energy,

and we also look at remnants of the early universe,

the cosmic microwave background that satellites.

And, importantly, we look for clues

from the various kinds of particle physics experiments,

like the LHC.

So, one last thing, then,

is a new thing that’s been going on.

String theory may turn out to be useful

in other areas of physics.

There are new kinds of experiments

that start out, say, with our friend the electron,

and actually show that in certain circumstances,

the electrons interact in a way

that give you completely new,

weird kinds of behavior.

And there are models that show

that string theory’s actually the best way.

In some circumstances,

using the rules of string theory,

you can actually explain that sort of behavior.

So this gives us an exciting possibility,

there’s real experiments you can do

with these electrons

that will help us shape the rules

for what string theory is.

And you might go,

“Well, OK, that’s going to give us

maybe some fancy new kind of electronics

that we can make a better cell phone with.”

But, what I’m saying that those rules

may actually be the same rules we’re looking for

to see if string theory can help us

with these bigger questions.

So, at the end of the day,

the hidden structures of the universe we’re looking for,

may, one day, be right under our noses.

Thank you.

抄写员:Andrea McDonough
审稿人:Bedirhan Cinar

因此,我致力于

了解宇宙是如何在最基本的层面上运行的,

这是我们能找到的最基本的层面。

所以,当你在日常生活

中尝试弄清楚某件事是如何运作的时,

你实际上在做的是寻找

我所说的隐藏结构。

例如,你拿手机

、智能手机之类的东西,

它是一个复杂的物体

,你可能想知道它是如何工作的。

好吧,你能做的就是

进去把它拆开。

您将使保修失效,但没关系。

你进去,你会

发现它是由微小的电子元件制成的。

这些电子元件实际上是围绕

着一种我们

知道的称为电子的粒子移动

,这就是“电子学”这个名字的由来。

因此,如果您知道

如何将这些东西放在一起的实际规则,

您实际上可以制作您的智能手机,

或者您也可以制作各种其他电子设备。

所以,像我这样的

人,实际上是为了谋生,尝试做这种

事情,不仅仅是为了手机或其组件,

而是问你的手是什么做的,或者你的椅子是什么做的

‘正坐在,

或行星地球

,太阳

,星星

,整个宇宙。

因此,使用各种仪器

、观察

和实验,这些年来

我们已经能够进行越来越深入的探索,

现在我们知道,我们所构成的物质以及我们在

我们周围看到的物质

实际上是由 微小的基本粒子。

基本粒子

通过自然力相互作用,

但我们也

发现这些自然力本身实际上也是

通过交换基本粒子而起作用的。

它们实际上是

由物质粒子交换的力粒子。

今年你可能

听说了一个重大新闻,

这个故事中的一个重大公告

,大型强子对撞机,大型强子对撞机,

欧洲的一项大型实验

,实际上发现了一个希格斯玻色子

,这个粒子的工作是

与 各种基本粒子,

并赋予它们我们观察到的质量。

所以,这张令人兴奋的图片

类似于我为您展示的手机图片。

我们有组件

,我们有粒子理论的规则,

正如它所说的,

这些都通过这些规则运作

并产生各种事物。

现在,我们实际上认为我们只是

触及了发现这个量子世界的表面

,我们世界的隐藏结构。

让我举三个例子

来说明我们仍在研究的谜题。

所以,我所做的是将粒子收集

到它们倾向于形成的模式中,

但我们不知道这些模式来自哪里。

我们知道如何描述粒子,

但我们不知道图案来自哪里。

当您看到科学中的模式时,

您会寻找隐藏的结构

,这就是其中之一。

此外,我们现在知道,除了

我刚才所说的事情之外,还有更多的事情。

这种东西叫做暗物质。

我们不知道它是什么

,我们希望能够得到它

并进行试验并弄清楚它是什么。

然后,我想谈的另一件事

是引力,

也许是我们所知道的最熟悉的力,

当你进入量子水平时,

它实际上并没有

按照那些规则运行 粒子理论。

因此,鉴于引力实际上

是爱因斯坦教给我们的关于空间和时间的形状,

我们在弄清楚引力的量子故事是什么时

,我们称之为量子引力,

我们希望得到诸如,是否存在这样的问题组

空间和时间的粒子本身

以及它们如何组合在一起?

都有些什么样的规矩?

因此,这将

我们引向诸如研究

137 亿年前

的宇宙大爆炸之类的事情。

我们知道物质和能量,

因为我们理解它是被创造出来的,

但也知道空间和时间本身。

所以这些就是

我们在这个探索中研究的东西。

此外,我们今天周围有一些东西,

比如黑洞,

这是非常重要的线索。

它们实际上

是我们想了解的空间洞。

还有,新发现的暗能量

,是

整个宇宙空间加速膨胀的趋势。

所以科学家们正在研究这类事情,

试图理解我们现在认为的情况

,不仅有

物质和能量的隐藏结构,

还有空间和时间。

那么问题来了,规则是什么?

对此有很多方法

,其中一种你可能听说过,

称为弦理论。

所以它是众多方法中的一种

,我们还不知道它是否正确,

我们还没有完成理论的发展,

但它给了我们一些非常令人兴奋和诱人的提示。

我想告诉你其中的一些。

所以,其中之一就是你放弃

寻找微小量子粒子的想法,

而是寻找一个扩展的物体

,一根可以振动的弦。

它实际上给了你一些令人兴奋的

机会,例如,它会说

如果我们

没有仔细观察而错过了那个隐藏的结构,

我们就不会意识到许多不同种类的粒子

只是同一根弦的不同振动,

这是一个非常令人兴奋的可能性

和一个巨大的简化。

这就是想法之一。

弦理论真正令人兴奋的另一件事

是,它所描述的其中一个粒子

实际上

是我们一直试图理解的缺失的引力量子。

然后另一件事是弦实际上,

而不是只想在维度中移动

,我们熟悉的三个空间维度,

实际上似乎想要在更高的维度中移动。

所以我们有这个想法,那么,

如果这与我们的世界有关,

而我们还不知道,这对我们的世界意味着什么?

这是我们的世界由此产生的一种方式。

你将拥有我们的世界,

然后其中一个隐藏的结构

将是时空中隐藏的块

,这些块是不可见的,那些额外的维度。

然后我们在世界上看到的各种粒子

来自于弦的振动,

而我们看到的那些我们无法解释的模式

来自于弦可以探测

和感受这些内部维度的形状。

那么,其中一件事是

,我们真的可以测试吗?

这是一个很好的想法,但是我们如何

用真实的实验和观察来面对这个,

因为我们在这里做科学呢?

这才是最难的。

我们认为,

探测足够微小的尺度

以查看弦是否存在所需的能量

,超出了我们希望很快得到的能量。

但是我们可以做的是我们可以

寻找那些隐藏结构的后果,

我们可以寻找这些东西是如何出现在

我们可以访问的物理学中的。

所以,这就是我们研究

暗物质、

黑洞、

暗能量等事物的原因

,我们还研究早期宇宙的残余物,

即卫星的宇宙微波背景。

而且,重要的是,我们

从各种粒子物理实验中寻找线索,

比如大型强子对撞机。

因此,最后一

件事是正在发生的新事物。

弦理论可能会

在物理学的其他领域发挥作用。

有一些新的实验

从我们的朋友电子开始

,实际上表明在某些情况下

,电子以

一种给你全新的、

奇怪的行为的方式相互作用。

还有一些模型

表明弦理论实际上是最好的方法。

在某些情况下,

使用弦理论的规则,

您实际上可以解释这种行为。

所以这给了我们一个令人兴奋的可能性

,你可以

用这些电子做一些真实的实验,

这将帮助我们塑造

弦理论的规则。

你可能会说,

“好吧,这可能会给我们

一些花哨的新型电子设备

,我们可以用它们来制造更好的手机。”

但是,我所说的这些规则

实际上可能是我们正在寻找的相同规则

,看看弦理论是否可以帮助我们

解决这些更大的问题。

因此,归根结底,

我们正在寻找的宇宙的隐藏结构,

也许有一天,就在我们的眼皮底下。

谢谢你。