The death of the universe Rene Hlozek

Looking up at the night sky,

we are amazed by how it seems to go on forever.

But what will the sky look like

billions of years from now?

A particular type of scientist,

called a cosmologist,

spends her time thinking about that very question.

The end of the universe is intimately linked

to what the universe contains.

Over 100 years ago,

Einstein developed the Theory of General Relativity,

formed of equations that help us

understand the relationship

between what a universe is made of

and its shape.

It turns out that the universe

could be curved like a ball or sphere.

We call this positively curved or closed.

Or it could be shaped like a saddle.

We call this negatively curved or open.

Or it could be flat.

And that shape determines

how the universe will live and die.

We now know that the universe is very close to flat.

However, the components of the universe

can still affect its eventual fate.

We can predict how the universe

will change with time

if we measure the amounts or energy densities

of the various components in the universe today.

So, what is the universe made of?

The universe contains all the things that we can see,

like stars, gas, and planets.

We call these things ordinary or baryonic matter.

Even though we see them all around us,

the total energy density of these components

is actually very small,

around 5% of the total energy of the universe.

So, now let’s talk about what the other 95% is.

Just under 27% of the rest

of the energy density of the universe

is made up of what we call dark matter.

Dark matter is only very weakly interacting with light,

which means it doesn’t shine or reflect light

in the way that stars and planets do,

but, in every other way,

it behaves like ordinary matter –

it attracts things gravitationally.

In fact, the only way we can detect this dark matter

is through this gravitational interaction,

how things orbit around it

and how it bends light

as it curves the space around it.

We have yet to discover a dark matter particle,

but scientists all over the world are searching

for this elusive particle or particles

and the effects of dark matter on the universe.

But this still doesn’t add up to 100%.

The remaining 68%

of the energy density of the universe

is made up of dark energy,

which is even more mysterious than dark matter.

This dark energy doesn’t behave

like any other substance we know at all

and acts more like anti-gravity force.

We say that it has a gravitational pressure,

which ordinary matter and dark matter do not.

Instead of pulling the universe together,

as we would expect gravity to do,

the universe appears to be expanding apart

at an ever-increasing rate.

The leading idea for dark energy

is that it is a cosmological constant.

That means it has the strange property

that it expands as the volume of space increases

to keep its energy density constant.

So, as the universe expands

as it is doing right now,

there will be more and more dark energy.

Dark matter and baryonic matter,

on the other hand,

don’t expand with the universe

and become more diluted.

Because of this property

of the cosmological constant,

the future universe will be more and more dominated

by dark energy,

becoming colder and colder

and expanding faster and faster.

Eventually, the universe will run out of gas

to form stars,

and the stars themselves will run out of fuel

and burn out,

leaving the universe with only black holes in it.

Given enough time,

even these black holes will evaporate,

leaving a universe that is completely cold and empty.

That is what we call the heat death of the universe.

While it might sound depressing

living in a universe

that will end its lifetime cold

and devoid of life,

the end fate of our universe

actually has a beautiful symmetry

to its hot, fiery beginning.

We call the accelerating end state

of the universe a de Sitter phase,

named after the Dutch mathematician

Willem de Sitter.

However, we also believe

that the universe had another phase

of de Sitter expansion

in the earliest times of its life.

We call this early period inflation,

where, shortly after the Big Bang,

the universe expanded extremely fast

for a brief period.

So, the universe will end

in much the same state as it began,

accelerating.

We live at an extraordinary time

in the life of the universe

where we can start to understand

the universe’s journey

and view a history

that plays itself out on the sky

for all of us to see.

仰望夜空,

我们惊讶于它似乎永远在继续。

数十亿年后的天空会是什么样子?

一种特殊类型的科学家,

称为宇宙学家,会

花时间思考这个问题。

宇宙的尽头与

宇宙所包含的东西密切相关。

100 多年前,

爱因斯坦提出了广义相对论,该理论

由方程式组成,可帮助我们

理解宇宙的构成

与其形状之间的关系。

事实证明,宇宙

可以像球或球体一样弯曲。

我们称之为正弯曲或闭合。

或者它的形状可以像马鞍。

我们称之为负弯曲或开放。

或者它可能是平的。

这种形状决定

了宇宙将如何生存和死亡。

我们现在知道宇宙非常接近平坦。

然而,宇宙的组成部分

仍然会影响它的最终命运。

如果我们测量

当今宇宙中各种成分的数量或能量密度,我们可以预测宇宙将如何随时间变化。

那么,宇宙是由什么构成的呢?

宇宙包含我们可以看到的所有事物,

例如恒星、气体和行星。

我们称这些东西为普通物质或重子物质。

尽管我们在我们周围都看到了它们,

但这些成分的总能量密度

实际上非常小,

约占宇宙总能量的 5%。

那么,现在让我们来谈谈另外 95% 是什么。

宇宙其余能量密度的不到 27%

是由我们所谓的暗物质组成的。

暗物质与光的相互作用非常微弱,

这意味着它不像

恒星和行星那样发光或反射光,

但在其他方面,

它的行为就像普通物质一样——

它通过引力吸引物体。

事实上,我们能够探测到这种暗物质的唯一方法

是通过这种引力相互作用,

了解物体如何围绕它运行

,以及它如何在弯曲周围空间时弯曲光线

我们还没有发现暗物质粒子,

但全世界的科学家都在

寻找这种难以捉摸的粒子,

以及暗物质对宇宙的影响。

但这仍然没有达到 100%。

宇宙剩余68%

的能量密度

是由暗能量构成的

,比暗物质还要神秘。

这种暗能量的行为

与我们所知道的任何其他物质完全不同

,更像是反重力。

我们说它有引力

,普通物质和暗物质没有。

宇宙并没有

像我们期望的引力那样

将宇宙拉在一起,而是似乎正在

以不断增加的速度膨胀。

暗能量的主要观点

是它是一个宇宙常数。

这意味着它具有奇怪的特性

,即随着空间体积的增加它会膨胀

以保持其能量密度恒定。

所以,随着宇宙

像现在这样膨胀,

将会有越来越多的暗能量。 另一方面

,暗物质和重子物质

不会随着宇宙膨胀

而变得更加稀薄。

因为宇宙常数的这个特性

,未来的宇宙会越来越

被暗能量支配,

越来越冷

,膨胀越来越快。

最终,宇宙将耗尽

气体形成恒星,

而恒星本身也会耗尽燃料

并燃烧殆尽,

留下的宇宙中只有黑洞。

如果有足够的时间,

即使是这些黑洞也会蒸发,

留下一个完全寒冷和空虚的宇宙。

这就是我们所说的宇宙热寂。

虽然

生活在一个

将结束其生命的寒冷

和没有生命的宇宙中听起来令人沮丧,

但我们宇宙的最终命运

实际上

与其炽热、炽热的开端有着美丽的对称性。

我们将宇宙加速结束

状态称为德西特阶段,

以荷兰数学家

威廉德西特命名。

然而,我们也

相信宇宙

在其生命的最早时期有另一个德西特膨胀阶段。

我们称之为早期暴胀,

在大爆炸后不久,宇宙在短时间内以

极快的速度膨胀

因此,宇宙将以

与开始时大致相同的状态结束,

加速。

我们生活

在宇宙生命中的一个非凡时期

,我们可以开始

了解宇宙的旅程,

并观看一段

在天空中上演的历史,

让我们所有人都能看到。