This new telescope might show us the beginning of the universe Wendy Freedman

When I was 14 years old,
I was interested in science –

fascinated by it,
excited to learn about it.

And I had a high school science teacher
who would say to the class,

“The girls don’t have to listen to this.”

Encouraging, yes.

(Laughter)

I chose not to listen –
but to that statement alone.

So let me take you
to the Andes mountains in Chile,

500 kilometers, 300 miles
northeast of Santiago.

It’s very remote, it’s very dry
and it’s very beautiful.

And there’s not much there.

There are condors, there are tarantulas,

and at night, when the light dims,

it reveals one of the darkest
skies on Earth.

It’s kind of a magic place, the mountain.

It’s a wonderful combination
of very remote mountaintop

with exquisitely sophisticated technology.

And our ancestors, for as long
as there’s been recorded history,

have looked at the night sky
and pondered the nature of our existence.

And we’re no exception, our generation.

The only difficulty is
that the night sky now is blocked

by the glare of city lights.

And so astronomers go
to these very remote mountaintops

to view and to study the cosmos.

So telescopes
are our window to the cosmos.

It’s no exaggeration to say that
the Southern Hemisphere is going to be

the future of astronomy
for the 21st century.

We have an array
of existing telescopes already,

in the Andes mountains in Chile,

and that’s soon to be joined by a really
sensational array of new capability.

There will be two international groups
that are going to be building

giant telescopes, sensitive
to optical radiation, as our eyes are.

There will be a survey telescope

that will be scanning the sky
every few nights.

There will be radio telescopes,

sensitive to long-wavelength
radio radiation.

And then there will be
telescopes in space.

There’ll be a successor
to the Hubble Space Telescope;

it’s called the James Webb Telescope,

and it will be launched in 2018.

There’ll be a satellite called TESS

that will discover planets
outside of our solar system.

For the last decade,
I’ve been leading a group –

a consortium – international group,

to build what will be, when it’s finished,

the largest optical
telescope in existence.

It’s called the Giant
Magellan Telescope, or GMT.

This telescope is going to have mirrors
that are 8.4 meters in diameter –

each of the mirrors.

That’s almost 27 feet.

So it dwarfs this stage – maybe
out to the fourth row in this audience.

Each of the seven mirrors
in this telescope

will be almost 27 feet in diameter.

Together, the seven mirrors
in this telescope will comprise

80 feet in diameter.

So, essentially the size
of this entire auditorium.

The whole telescope will stand
about 43 meters high,

and again, being in Rio,

some of you have been to see
the statue of the giant Christ.

The scale is comparable in height;

in fact, it’s smaller
than this telescope will be.

It’s comparable to the size
of the Statue of Liberty.

And it’s going to be housed
in an enclosure that’s 22 stories –

60 meters high.

But it’s an unusual building
to protect this telescope.

It will have open windows to the sky,

be able to point and look at the sky,

and it will actually rotate on a base –

2,000 tons of rotating building.

The Giant Magellan Telescope
will have 10 times the resolution

of the Hubble Space Telescope.

It will be 20 million times
more sensitive than the human eye.

And it may, for the first time ever,
be capable of finding life on planets

outside of our solar system.

It’s going to allow us to look back
at the first light in the universe –

literally, the dawn of the cosmos.

The cosmic dawn.

It’s a telescope that’s
going to allow us to peer back,

witness galaxies as they were
when they were actually assembling,

the first black holes in the universe,
the first galaxies.

Now, for thousands of years,
we have been studying the cosmos,

we’ve been wondering
about our place in the universe.

The ancient Greeks told us

that the Earth was the center
of the universe.

Five hundred years ago,
Copernicus displaced the Earth,

and put the Sun
at the heart of the cosmos.

And as we’ve learned over the centuries,

since Galileo Galilei,
the Italian scientist,

first turned, in that time, a two-inch,
very small telescope, to the sky,

every time we have built
larger telescopes,

we have learned something
about the universe;

we’ve made discoveries, without exception.

We’ve learned in the 20th century
that the universe is expanding

and that our own solar system
is not at the center of that expansion.

We know now that the universe
is made of about 100 billion galaxies

that are visible to us,

and each one of those galaxies
has 100 billion stars within it.

So we’re looking now
at the deepest image of the cosmos

that’s ever been taken.

It was taken using
the Hubble Space Telescope,

and by pointing the telescope at what
was previously a blank region of sky,

before the launch of Hubble.

And if you can imagine this tiny area,

it’s only one-fiftieth
of the size of the full moon.

So, if you can imagine the full moon.

And there are now 10,000 galaxies
visible within that image.

And the faintness of those images
and the tiny size is only a result

of the fact that those galaxies
are so far away, the vast distances.

And each of those galaxies
may contain within it

a few billion or even hundreds
of billions of individual stars.

Telescopes are like time machines.

So the farther back we look in space,
the further back we see in time.

And they’re like light buckets –
literally, they collect light.

So larger the bucket,
the larger the mirror we have,

the more light we can see,
and the farther back we can view.

So, we’ve learned in the last century

that there are exotic objects
in the universe – black holes.

We’ve even learned
that there’s dark matter and dark energy

that we can’t see.

So you’re looking now
at an actual image of dark matter.

(Laughter)

You got it. Not all audiences get that.

(Laughter)

So the way we infer
the presence of dark matter –

we can’t see it – but there’s
an unmistakable tug, due to gravity.

We now can look out,
we see this sea of galaxies

in a universe that’s expanding.

What I do myself is to measure
the expansion of the universe,

and one of the projects
that I carried out in the 1990s

used the Hubble Space Telescope to measure
how fast the universe is expanding.

We can now trace back to 14 billion years.

We’ve learned over time
that stars have individual histories;

that is, they have birth,
they have middle ages

and some of them
even have dramatic deaths.

So the embers from those stars actually
then form the new stars that we see,

most of which turn out to have
planets going around them.

And one of the really surprising results
in the last 20 years

has been the discovery
of other planets going around other stars.

These are called exoplanets.

And until 1995, we didn’t even know
the existence of any other planets,

other than going around our own sun.

But now, there are almost 2,000
other planets orbiting other stars

that we can now detect,
measure masses for.

There are 500 of those
that are multiple-planet systems.

And there are 4,000 –
and still counting – other candidates

for planets orbiting other stars.

They come in a bewildering variety
of different kinds.

There are Jupiter-like
planets that are hot,

there are other planets that are icy,
there are water worlds

and there are rocky planets
like the Earth, so-called “super-Earths,”

and there have even been planets
that have been speculated diamond worlds.

So we know there’s at least one planet,
our own Earth, in which there is life.

We’ve even found planets
that are orbiting two stars.

That’s no longer the province
of science fiction.

So around our own planet,
we know there’s life,

we’ve developed a complex life,
we now can question our own origins.

And given all that we’ve discovered,
the overwhelming numbers now suggest

that there may be millions, perhaps –
maybe even hundreds of millions –

of other [planets]
that are close enough –

just the right distance from their stars
that they’re orbiting –

to have the existence of liquid water
and maybe could potentially support life.

So we marvel now at those odds,
the overwhelming odds,

and the amazing thing
is that within the next decade,

the GMT may be able to take spectra
of the atmospheres of those planets,

and determine whether or not
they have the potential for life.

So, what is the GMT project?

It’s an international project.

It includes Australia, South Korea,
and I’m happy to say, being here in Rio,

that the newest partner
in our telescope is Brazil.

(Applause)

It also includes a number of institutions
across the United States,

including Harvard University,

the Smithsonian
and the Carnegie Institutions,

and the Universities of Arizona, Chicago,
Texas-Austin and Texas A&M University.

It also involves Chile.

So, the making of the mirrors
in this telescope is also fascinating

in its own right.

Take chunks of glass, melt them
in a furnace that is itself rotating.

This happens underneath
the football stadium

at the University of Arizona.

It’s tucked away under 52,000 seats.

Nobody know it’s happening.

And there’s essentially
a rotating cauldron.

The mirrors are cast
and they’re cooled very slowly,

and then they’re polished
to an exquisite precision.

And so, if you think
about the precision of these mirrors,

the bumps on the mirror,
over the entire 27 feet,

amount to less
than one-millionth of an inch.

So, can you visualize that?

Ow!

(Laughter)

That’s one five-thousandths
of the width of one of my hairs,

over this entire 27 feet.

It’s a spectacular achievement.

It’s what allows us to have
the precision that we will have.

So, what does that precision buy us?

So the GMT, if you can imagine –

if I were to hold up a coin,
which I just happen to have,

and I look at the face of that coin,
I can see from here

the writing on the coin;
I can see the face on that coin.

My guess that even in the front row,
you can’t see that.

But if we were to turn
the Giant Magellan Telescope,

all 80-feet diameter
that we see in this auditorium,

and point it 200 miles away,

if I were standing in São Paulo,
we could resolve the face of this coin.

That’s the extraordinary resolution
and power of this telescope.

And if we were –

(Applause)

If an astronaut went up to the Moon,
a quarter of a million miles away,

and lit a candle – a single candle –

then we would be able
to detect it, using the GMT.

Quite extraordinary.

This is a simulated image
of a cluster in a nearby galaxy.

“Nearby” is astronomical,
it’s all relative.

It’s tens of millions of light-years away.

This is what this cluster would look like.

So look at those four bright objects,

and now lets compare it with a camera
on the Hubble Space Telescope.

You can see faint detail
that starts to come through.

And now finally – and look how dramatic
this is – this is what the GMT will see.

So, keep your eyes on those
bright images again.

This is what we see on one of the most
powerful existing telescopes on the Earth,

and this, again, what the GMT will see.

Extraordinary precision.

So, where are we?

We have now leveled the top
of the mountaintop in Chile.

We blasted that off.

We’ve tested and polished
the first mirror.

We’ve cast the second
and the third mirrors.

And we’re about to cast the fourth mirror.

We had a series of reviews this year,

international panels
that came in and reviewed us,

and said, “You’re ready
to go to construction.”

And so we plan on building this telescope
with the first four mirrors.

We want to get on the air quickly,
and be taking science data –

what we astronomers call
“first light,” in 2021.

And the full telescope will be finished
in the middle of the next decade,

with all seven mirrors.

So we’re now poised to look back
at the distant universe,

the cosmic dawn.

We’ll be able to study other planets
in exquisite detail.

But for me, one of the most
exciting things about building the GMT

is the opportunity
to actually discover something

that we don’t know about –
that we can’t even imagine at this point,

something completely new.

And my hope is that with the construction
of this and other facilities,

that many young women and men
will be inspired to reach for the stars.

Thank you very much.

Obrigado.

(Applause)

Bruno Giussani: Thank you, Wendy.

Stay with me, because
I have a question for you.

You mentioned different facilities.

So the Magellan Telescope is going up,
but also ALMA and others in Chile

and elsewhere, including in Hawaii.

Is it about cooperation
and complementarity, or about competition?

I know there’s competition in terms
of funding, but what about the science?

Wendy Freedman: In terms of the science,
they’re very complementary.

The telescopes that are in space,
the telescopes on the ground,

telescopes with different
wavelength capability,

telescopes even that are similar,
but different instruments –

they will all look at different parts
of the questions that we’re asking.

So when we discover other planets,
we’ll be able to test those observations,

we’ll be able to measure the atmospheres,

be able to look in space
with very high resolution.

So, they’re very complementary.

You’re right about
the funding, we compete;

but scientifically,
it’s very complementary.

BG: Wendy, thank you very much
for coming to TEDGlobal.

WF: Thank you.

(Applause)

当我 14 岁的时候,
我对科学很感兴趣——

对它着迷,很
高兴了解它。

我有一位高中科学
老师会对全班说,

“女孩们不必听这个。”

鼓励,是的。

(笑声)

我选择不去听
——只听那句话。

所以让我
带你去智利的安第斯山脉

,距离圣地亚哥东北 500 公里,300 英里

它很偏僻,很干燥
,很漂亮。

而且那里没有太多东西。

有秃鹰,有狼蛛

,晚上,当光线变暗时,

它揭示
了地球上最黑暗的天空之一。

这是一个神奇的地方,山。


是非常偏远的山顶

与精致复杂的技术的完美结合。

而我们的祖先,
只要有历史记载,

就一直仰望夜空
,思考我们存在的本质。

我们这一代也不例外。

唯一的困难是
,现在的夜空被

城市灯光的刺眼挡住了。

所以天文学家
去这些非常偏远的

山顶观察和研究宇宙。

所以望远镜
是我们通向宇宙的窗口。

毫不夸张地说
,南半球将成为

21 世纪天文学的未来。

我们已经在智利的安第斯山脉拥有了
一系列现有的望远镜

并且很快就会加入一系列非常
引人注目的新能力。

将有两个国际
组织将建造

巨型望远镜,
对光辐射敏感,就像我们的眼睛一样。

将有一个巡天望远镜

每隔几个晚上扫描一次天空。

将有射电望远镜,

对长波
无线电辐射敏感。

然后
在太空中会有望远镜。

哈勃太空望远镜将有继任者;

它被称为詹姆斯韦伯望远镜

,将于 2018 年发射。

将有一颗名为 TESS 的卫星

,它将发现
太阳系外的行星。

在过去的十年里,
我一直在领导一个集团——

一个财团——国际集团

,建造完成后将

成为现存最大的光学
望远镜。

它被称为巨型
麦哲伦望远镜,或 GMT。

这台望远镜将配备
直径 8.4 米的镜子——

每个镜子。

那几乎是27英尺。

所以它使这个舞台相形见绌——也许
在这个观众的第四排。

这架望远镜中的七个镜子中的每一个都

将有近 27 英尺的直径。

这台望远镜中的七面镜子加在一起,

直径将达到 80 英尺。

所以,基本上
是整个礼堂的大小。

整个望远镜将
高约 43 米

,再次,在里约热内卢,

你们中的一些人已经看到
了巨人基督的雕像。

尺度在高度上是可比的;

事实上,它
比这台望远镜还要小。

它与
自由女神像的大小相当。

它将被安置
在一个 22 层的围场中

——60 米高。

但保护这台望远镜的是一座不寻常的
建筑。

它将打开通向天空的窗户,

能够指向和仰望天空

,它实际上会在一个底座

上旋转——2000 吨的旋转建筑物。

巨型麦哲伦望远镜
的分辨率

将是哈勃太空望远镜的 10 倍。

它将
比人眼敏感2000万倍。

它可能有史以来第一次
能够在我们太阳系以外的行星上发现生命

它将让我们回顾
宇宙中的第一道光——

字面意思是宇宙的黎明。

宇宙黎明。

它是一个望远镜,
可以让我们回望,

目睹星系
真正组装时的样子,

宇宙中的第一个黑洞,
第一个星系。

现在,几千年来,
我们一直在研究宇宙,

我们一直在
想我们在宇宙中的位置。

古希腊人告诉我们

,地球是宇宙的中心

五百年前,
哥白尼取代了地球

,将
太阳置于宇宙的中心。

正如我们几个世纪以来所了解到的那样

,自从意大利科学家伽利略·伽利莱(Galileo Galilei

)在那个时候第一次将两英寸
非常小的望远镜转向天空

以来,每次我们建造
更大的望远镜时,

我们都学到了一些东西
关于宇宙;

我们已经有了发现,无一例外。

我们在 20 世纪
了解到宇宙正在膨胀

,而我们自己的
太阳系并不是膨胀的中心。

我们现在知道,宇宙
是由我们可以看到的大约 1000 亿个星系组成的

,每个星系中
都有 1000 亿颗恒星。

因此,我们现在正在寻找有史以来
最深的宇宙图像

它是
使用哈勃太空望远镜拍摄的

,在哈勃发射之前,将望远镜对准了
以前是一片空白的天空区域

如果你能想象这个很小的区域,

它只有
满月大小的五十分之一。

所以,如果你能想象满月。

现在
在该图像中可见 10,000 个星系。

而这些图像的模糊
和微小的尺寸只是

这些
星系如此遥远、遥远的事实的结果。

而这些星系中的每一个都
可能

包含数十亿甚至
数千亿颗单独的恒星。

望远镜就像时光机。

因此,我们在太空中看的越远,
我们在时间中看到的越远。

它们就像光桶——
从字面上看,它们收集光。

所以
桶越大,我们的镜子就越大,

我们能看到的光越多,
我们能看到的背面越远。

所以,我们在上个世纪

了解到宇宙中有奇异的
物体——黑洞。

我们甚至
了解到存在我们看不到的暗物质和暗能量

所以你现在看到
的是暗物质的真实图像。

(笑声)

你明白了。 并不是所有的观众都能理解。

(笑声)

所以我们
推断暗物质存在的方式——

我们看不到它——但是
由于重力,有一个明显的拖拽。

我们现在可以向外看,
我们看到这个

正在膨胀的宇宙中的星系海。

我自己做的是测量
宇宙的膨胀

,我在 1990 年代进行的项目之一是

使用哈勃太空望远镜来测量
宇宙膨胀的速度。

我们现在可以追溯到 140 亿年前。

随着时间的推移
,我们了解到恒星有各自的历史。

也就是说,他们有出生,
他们有中年

,其中一些
甚至有戏剧性的死亡。

因此,这些恒星的余烬
实际上形成了我们所看到的新恒星,

其中大部分最终都有
行星围绕它们运行。

过去 20 年中真正令人惊讶的结果之一

是发现
了其他行星围绕其他恒星运行。

这些被称为系外行星。

直到 1995 年,我们甚至不知道
任何其他行星的存在,

除了绕着我们自己的太阳转。

但现在,我们现在可以探测到、测量质量的近 2,000
颗其他行星围绕其他恒星运行

其中有 500 个
是多行星系统。

并且还有 4,000 颗——
而且还在增加——其他

候选行星围绕其他恒星运行。

它们有各种各样令人眼花缭乱
的不同种类。

有类似木星的
行星很热,

也有其他行星很冰,
有水世界

,也有
像地球这样的岩石行星,所谓的“超级地球”

,甚至
还有被推测的行星 钻石世界。

所以我们知道至少有一个星球,
我们自己的地球,其中有生命。

我们甚至
发现了围绕两颗恒星运行的行星。

这不再
是科幻小说的领域。

所以在我们自己的星球周围,
我们知道有生命,

我们已经发展出复杂的生命,
我们现在可以质疑我们自己的起源。

鉴于我们所发现
的一切,压倒性的数字现在

表明,可能有数百万,也许——
甚至数亿——足够接近

的其他[行星]
——

与它们的恒星的距离恰到好处
,以至于它们 ‘正在绕轨道运行

——有液态水的存在
,也许有可能支持生命。

所以我们现在惊叹于这些可能性
,压倒性的可能性,

令人惊奇的
是,在未来十年内

,格林威治标准时间可能能够获取
这些行星的大气光谱,

并确定
它们是否具有生命的潜力。

那么,什么是 GMT 项目?

这是一个国际项目。

它包括澳大利亚、韩国
,我很高兴来到里约,

我们望远镜的最新合作伙伴
是巴西。

(掌声)

它还包括
美国各地的一些机构,

包括哈佛大学

、史密森尼
和卡内基研究所,

以及亚利桑那大学、芝加哥大学、
德克萨斯-奥斯汀大学和德克萨斯农工大学。

它还涉及智利。

因此,
这台望远镜中镜子的制作本身也令人

着迷。

取大块玻璃
,在本身旋转的熔炉中将它们熔化。

这发生

在亚利桑那大学的足球场下面。

它隐藏在 52,000 个座位之下。

没有人知道它正在发生。

本质上是
一个旋转的大锅。

镜子是铸造的
,它们被非常缓慢地冷却,

然后被抛光
到非常精确的程度。

因此,如果你
考虑这些镜子的精度,

镜子上的凸起,
在整个 27 英尺上

,总计
不到百万分之一英寸。

那么,你能想象得到吗?

哦!

(笑声)

在整个 27 英尺的范围内,这是我一根头发宽度的千分之一。

这是一项了不起的成就。

这就是让我们拥有
我们将拥有的精度的原因。

那么,这种精度给我们带来了什么?

所以格林威治标准时间,如果你能想象的话——

如果我举起一枚
我碰巧有的

硬币,我看着那枚硬币的正面,
我可以从这里看到

硬币上的文字;
我可以看到那枚硬币上的脸。

我猜即使在前排,
你也看不到。

但如果我们
转动巨型麦哲伦望远镜

,我们在这个礼堂中看到的所有直径为 80 英尺,

并将其指向 200 英里外,

如果我站在圣保罗,
我们就可以分辨出这枚硬币的正面。

这就是
这台望远镜非凡的分辨率和能力。

如果我们是——

(掌声)

如果一名宇航员登上
一百万英里外的月球

,点燃一根蜡烛——一根蜡烛——

那么我们就
能够使用格林威治标准时间检测到它。

相当非凡。


是附近星系中星团的模拟图像。

“附近”是天文数字
,都是相对的。

它距离我们数千万光年。

这就是这个集群的样子。

所以看看这四个明亮的物体

,现在让我们将它与
哈勃太空望远镜上的相机进行比较。

您可以看到开始显现的微弱细节

现在终于——看看这有多么戏剧化
——这就是格林威治标准时间所看到的。

因此,请再次关注那些
明亮的图像。

这是我们
在地球上最强大的现有望远镜之一上

看到的,这也是格林威治标准时间所看到的。

非凡的精确度。

那么,我们在哪里?

我们现在已经平整
了智利的山顶。

我们把它搞砸了。

我们已经测试并抛光
了第一面镜子。

我们已经投射了第二个
和第三个镜子。

我们即将投下第四面镜子。

今年我们进行了一系列审查,

国际
专家组进来对我们进行了审查,

并说:“你已经准备
好去建设了。”

所以我们计划
用前四个镜子建造这个望远镜。

我们希望快速上线,
并获取科学数据——

我们天文学家称之为
2021 年的“第一束光”。

完整的望远镜将
在未来十年的中期完成,

包括所有七面镜子。

所以我们现在准备
回顾遥远的宇宙

,宇宙的黎明。

我们将能够
细致入微地研究其他行星。

但对我来说,
构建 GMT 最令人兴奋的事情之一

就是有
机会真正

发现我们不知道的东西
——我们现在甚至无法想象,

一些全新的东西。

我的希望是,
随着这个设施和其他设施的建设

,许多年轻女性和男性
将受到鼓舞去追星。

非常感谢你。

奥布里加多。

(掌声)

Bruno Giussani:谢谢你,Wendy。

留在我身边,因为
我有一个问题要问你。

你提到了不同的设施。

所以麦哲伦望远镜正在上升,
还有 ALMA 和智利

和其他地方的其他人,包括夏威夷。

是关于合作
和互补,还是关于竞争?

我知道在资金方面存在竞争
,但科学呢?

Wendy Freedman:就科学而言,
它们非常互补。

太空中
的望远镜,地面上的

望远镜,具有不同
波长能力的

望远镜,甚至是相似
但不同的仪器的望远镜——

它们都会着眼于
我们所问问题的不同部分。

因此,当我们发现其他行星时,
我们将能够测试这些观测结果,

我们将能够测量大气,

能够
以非常高的分辨率观察太空。

所以,它们是非常互补的。


对资金的看法是对的,我们竞争;

但在科学上,
它是非常互补的。

BG:Wendy,非常感谢你
来到 TEDGlobal。

WF:谢谢。

(掌声)