Whats the smallest thing in the universe Jonathan Butterworth

If you were to take any everyday object,
say a coffee cup, and break it in half,

then in half again, and keep carrying on,
where would you end up?

Could you keep on going forever?

Or would you find a set of
indivisible building blocks

out of which everything is made?

Physicists have found the latter- that
matter is made of fundamental particles,

the smallest things in the universe.

Particles interact with each other according
to a theory called the “Standard Model”.

The Standard Model is a remarkably
elegant encapsulation

of the strange quantum world of
indivisible, infinitely small particles.

It also covers the forces that govern
how particles move,

interact, and bind together to give shape
to the world around us.

So how does it work?

Zooming in on the fragments of the cup,

we see molecules, made of atoms
bound up together.

A molecule is the smallest unit
of any chemical compound.

An atom is the smallest unit of any
element in the periodic table.

But the atom is not the
smallest unit of matter.

Experiments found that each atom
has a tiny, dense nucleus,

surrounded by a cloud
of even tinier electrons.

The electron is, as far as we know,

one of the fundamental, indivisible
building blocks of the universe.

It was the first Standard Model
particle ever discovered.

Electrons are bound to an atom’s
nucleus by electromagnetism.

They attract each other by exchanging
particles called photons,

which are quanta of light that carry
the electromagnetic force,

one of the fundamental
forces of the Standard Model.

The nucleus has more secrets to reveal,
as it contains protons and neutrons.

Though once thought to be fundamental
particles on their own, in 1968

physicists found that protons and neutrons
are actually made of quarks,

which are indivisible.

A proton contains two “up” quarks
and one “down” quark.

A neutron contains two down
quarks and one up.

The nucleus is held together
by the strong force,

another fundamental force
of the Standard Model.

Just as photons carry
the electromagnetic force,

particles called gluons
carry the strong force.

Electrons, together with up
and down quarks,

seem to be all we need to build atoms
and therefore describe normal matter.

However, high energy experiments reveal
that there are actually six quarks–

down & up, strange & charm,
and bottom & top

  • and they come in a wide range of masses.

The same was found for electrons,

which have heavier siblings
called the muon and the tau.

Why are there three (and only three)
different versions

of each of these particles?

This remains a mystery.

These heavy particles are only produced,
for very brief moments,

in high energy collisions,
and are not seen in everyday life.

This is because they decay very
quickly into the lighter particles.

Such decays involve the exchange
of force-carrying particles,

called the W and Z, which
– unlike the photon – have mass.

They carry the weak force,
the final force of the Standard Model.

This same force allows protons and
neutrons to transform into each other,

a vital part of the fusion interactions
that drive the Sun.

To observe the W and Z directly,

we needed the high energy collisions
provided by particle accelerators.

There’s another kind of Standard Model
particle, called neutrinos.

These only interact with other particles
through the weak force.

Trillions of neutrinos, many generated
by the sun, fly through us every second.

Measurements of weak interactions found that
there are different kinds of neutrinos

associated with the electron,
muon, and tau.

All these particles also have
antimatter versions,

which have the opposite charge
but are otherwise identical.

Matter and antimatter particles are
produced in pairs in high-energy collisions,

and they annihilate each other
when they meet.

The final particle of the Standard Model
is the Higgs boson

– a quantum ripple in the background
energy field of the universe.

Interacting with this field is how all the
fundamental matter particles acquire mass,

according to the Standard Model.

The ATLAS Experiment on
the Large Hadron Collider

is studying the Standard Model in-depth.

By taking precise measurements of the particles
and forces that make up the universe,

ATLAS physicists can look for
answers to mysteries

not explained by the Standard Model.

For example, how does gravity fit in?

What is the real relationship between
force carriers and matter particles?

How can we describe “Dark Matter”,

which makes up most of the mass in the
universe but remains unaccounted for?

While the Standard Model provides a beautiful
explanation for the world around us,

there is still a universe’s worth of
mysteries left to explore.

如果你拿任何日常用品,
比如一个咖啡杯,然后把它掰成两半,

然后再掰成两半,继续往前走,
你会到哪里去?

你能一直坚持下去吗?

或者你会找到一组
不可分割的构建

块,一切都是由它们构成的吗?

物理学家发现了后者——
物质是由基本粒子构成的,

是宇宙中最小的东西。

根据称为“标准模型”的理论,粒子相互作用。

标准模型是


不可分割的无限小粒子的奇异量子世界的一个非常优雅的封装。

它还涵盖了控制
粒子如何移动、

相互作用和结合在一起以
形成我们周围世界的力量。

那么它是怎样工作的?

放大杯子的碎片,

我们看到分子,由
结合在一起的原子组成。

分子是任何化合物的最小单位

原子是元素周期表中任何元素的最小单位

但原子不是
物质的最小单位。

实验发现,每个原子
都有一个微小而致密的原子核,

周围环绕
着更微小的电子云。

据我们所知,电子是宇宙

中不可分割的基本
组成部分之一。

这是
有史以来第一个发现的标准模型粒子。

电子
通过电磁力与原子核结合。

它们通过交换
称为光子的粒子相互吸引,光子

是携带电磁力的光量子,这是

标准模型的基本力之一。

原子核有更多的秘密要揭示,
因为它包含质子和中子。

虽然曾经被认为是
基本粒子,但在 1968 年,

物理学家发现质子和
中子实际上是由不可分割的夸克构成的

一个质子包含两个“上”夸克
和一个“下”夸克。

一个中子包含两个下
夸克和一个上夸克。

原子核
由强大的力量结合在一起,这

是标准模型的另一个基本力量。

就像光子
携带电磁力一样,

称为胶子的粒子
携带着强大的力。

电子
以及上下夸克

似乎是我们构建原子所需的全部
,因此可以描述正常物质。

然而,高能实验表明
,实际上有六个夸克——

上下夸克、奇粲夸克
、底夸克和顶夸克

——它们的质量范围很广。

电子也发现了同样的情况,

它们有更重的兄弟姐妹,
称为 μ 子和 tau。

为什么每个粒子都有三个(而且只有三个)
不同的

版本?

这仍然是一个谜。

这些重粒子只
在非常短暂的时刻,

在高能碰撞中产生,
在日常生活中是看不到的。

这是因为它们很快衰减
成较轻的粒子。

这种衰变涉及
携带力的粒子的交换,

称为 W 和 Z
,与光子不同,它们具有质量。

它们承载着弱力,
即标准模型的最终力量。

同样的力使质子和
中子相互转化,

这是驱动太阳的聚变相互作用的重要组成部分

为了直接观察 W 和 Z,

我们需要
粒子加速器提供的高能碰撞。

还有另一种标准模型
粒子,称为中微子。

它们仅通过弱力与其他粒子相互作用

数以万亿计的中微子,其中许多是
由太阳产生的,每秒都从我们身边飞过。

对弱相互作用的测量发现,
有不同种类的中微子

与电子、
μ子和 tau 相关联。

所有这些粒子也有
反物质版本,

它们具有相反的电荷,
但在其他方面是相同的。

物质和反物质粒子
在高能碰撞中成对产生

,相遇时相互湮灭

标准模型的最后一个粒子
是希格斯玻色子

——
宇宙背景能量场中的量子涟漪。 根据标准模型,

与该场相互作用是所有
基本物质粒子如何获得质量

大型强子对撞机 ATLAS 实验

正在深入研究标准模型。

通过
对构成宇宙的粒子和力进行精确测量,

ATLAS 物理学家可以寻找

标准模型无法解释的谜团的答案。

例如,重力如何适应? 力载体和物质粒子

之间的真正关系是什么

我们如何描述“暗物质”,

它构成了
宇宙中大部分质量但仍然下落不明?

虽然标准模型为我们周围的世界提供了一个美丽的
解释,

但仍有许多值得探索的宇宙之
谜。